Counting Answer Sets of Disjunctive Answer Set Programs

Mohimenul Kabir^a, Supratik Chakraborty^b, and Kuldeep S. Meel^{c,d}

^aNational University of Singapore ^bIndian Institute of Technology, Bombay ^cGeorgia Institute of Technology ^dUniversity of Toronto

41st International Conference on Logic Programming (ICLP), Rende, Italy, 2025

- Roots in logic programming and non-monotonic reasoning
- A rule-based language for problem encoding

$$\underline{h_1 \vee \dots h_\ell}_{\substack{\textit{head}}} \leftarrow \underline{b_1, \dots, b_k, \sim b_{k+1}, \dots, \sim b_{k+m}.}_{\substack{\textit{body}}}$$

- Roots in logic programming and non-monotonic reasoning
- A rule-based language for problem encoding

$$\underbrace{h_1 \vee \dots h_\ell}_{\textit{head}} \leftarrow \underbrace{b_1, \dots, b_k, \sim b_{k+1}, \dots, \sim b_{k+m}.}_{\textit{body}}$$

- ▶ An ASP program $P \equiv \text{set of rules}$
- ▶ Definition: Program P is called *disjunctive* if $\exists r \in P$ s.t. $|\mathsf{Head}(r)| > 1$ [EG95]; otherwise, program P is called *normal*
- ▶ The model of *P* is an answer set (denoted as AS(*P*))

- Roots in logic programming and non-monotonic reasoning
- A rule-based language for problem encoding

$$\underbrace{h_1 \vee \dots h_\ell}_{\textit{head}} \leftarrow \underbrace{b_1, \dots, b_k, \sim b_{k+1}, \dots, \sim b_{k+m}.}_{\textit{body}}$$

- ▶ An ASP program $P \equiv \text{set of rules}$
- ▶ Definition: Program P is called *disjunctive* if $\exists r \in P$ s.t. $|\mathsf{Head}(r)| > 1$ [EG95]; otherwise, program P is called *normal*
- ▶ The model of P is an answer set (denoted as AS(P))
- Answer set programming is based on Justification everything is false unless there are some justifications.
- ► Consider an ASP program, $P = \{ \underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{a \lor s \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}$
 - ▶ $\{s\} \in AS(P)$; since s is justified by r_3 or r_4
 - ▶ $\{a, b, s\} \notin AS(P)$; since a and b are NOT justified

- Roots in logic programming and non-monotonic reasoning
- A rule-based language for problem encoding

$$\underline{h_1 \vee \dots h_\ell}_{\substack{\textit{head}}} \leftarrow \underline{b_1, \dots, b_k, \sim b_{k+1}, \dots, \sim b_{k+m}.}_{\substack{\textit{body}}}$$

- ▶ An ASP program $P \equiv$ set of rules
- ▶ Definition: Program P is called *disjunctive* if $\exists r \in P$ s.t. |Head(r)| > 1 [EG95]; otherwise, program P is called *normal*
- ▶ The model of *P* is an *answer set* (denoted as AS(*P*))
- Answer set programming is based on Justification everything is false unless there are some justifications.
- ► Consider an ASP program, $P = \{ \underline{a \leftarrow b.}_{r_1} \quad \underline{b \leftarrow a.}_{r_2} \quad \underline{a \lor s \leftarrow \top.}_{r_3} \quad \underline{s \leftarrow \sim t.} \}$
 - ▶ $\{s\} \in AS(P)$; since s is justified by r_3 or r_4
 - ▶ $\{a, b, s\} \notin AS(P)$; since a and b are NOT justified
- ▶ Answer Set Counting: Given a (disjunctive) program P, find |AS(P)|

State-of-the-art ASP Counters and Our Contribution

Normal Logic Program
Complexity: #P [J2006]

Theory & Implementation

JN2011;J2006;ACM⁺2015;FHM⁺17 EHK2024;KCM2024;FGH⁺2024

State-of-the-art ASP Counters and Our Contribution

Normal Logic Program
Complexity: #P [J2006]

Theory & Implementation

JN2011;J2006;ACM⁺2015;FHM⁺17 EHK2024;KCM2024;FGH⁺2024 Disjunctive Logic Program

Complexity: #·co-NP [FHM⁺17]

Only Theory

HK2023

State-of-the-art ASP Counters and Our Contribution

Normal Logic Program Complexity: #P [J2006]

Theory & Implementation

JN2011;J2006;ACM⁺2015;FHM⁺17 EHK2024;KCM2024;FGH⁺2024 Disjunctive Logic Program
Complexity: #·co-NP [FHM+17]

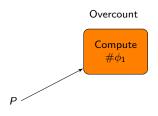
Only Theory

HK2023

Our Contribution: SharpASP-SR

- focus on both theory and implementation
- subtraction-based approach
- ► formulate to projected model counting

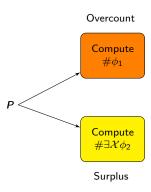
SharpASP-SR: High-level Methodology



Given the disjunctive logic program P

Overcount: Overcount the number of answer sets $(\#\phi_1)$

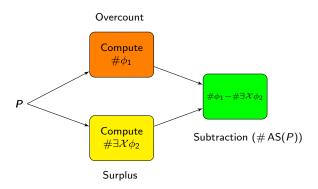
SharpASP-SR: High-level Methodology



Given the disjunctive logic program P

- **Overcount**: Overcount the number of answer sets $(\#\phi_1)$
- ▶ Surplus: Carefully count the surplus $(\#\exists \mathcal{X}\phi_2)$

SharpASP-SR: High-level Methodology



Given the disjunctive logic program P

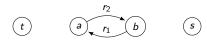
- **Overcount**: Overcount the number of answer sets $(\#\phi_1)$
- ▶ Surplus: Carefully count the surplus $(\#∃X\phi_2)$
- **Subtraction**: $\#\phi_1 \#∃X\phi_2$

► Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]

- ► Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]
- ightharpoonup Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]
- ▶ Cyclic programs: there exists some cyclic relations between program atoms

- ► Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]
- ► Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]
- Cyclic programs: there exists some cyclic relations between program atoms

Example:
$$P = \{ \underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{s \lor a \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}.$$



atom	rule	Comp(P)	
а	$a \leftarrow b$, $a \lor s \leftarrow \top$	$a \longrightarrow (b \lor \neg s)$	
b	$b \leftarrow a$	$b \longrightarrow a$	
S	$a \lor s \leftarrow \top$, $s \leftarrow \sim t$	$s \longrightarrow (\neg a \lor \neg t)$	
t	-	$\neg t$	

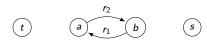
- ► Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]
- ► Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]
- ▶ Cyclic programs: there exists some cyclic relations between program atoms

Example:
$$P = \{ \underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{s \lor a \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}.$$

atom	rule	Comp(P)	rule	Comp(P)
а	$a \leftarrow b$, $a \lor s \leftarrow \top$	$a \longrightarrow (b \lor \neg s)$	$r_1: a \leftarrow b$	$b \longrightarrow a$
Ь	$b \leftarrow a$	$b \longrightarrow a$	$r_2:b\leftarrow a$	$a \longrightarrow b$
5	$a \lor s \leftarrow \top$, $s \leftarrow \sim t$	$s \longrightarrow (\neg a \lor \neg t)$	$r_3: a \lor s \leftarrow \top$	$a \lor s$
t	-	$\neg t$	$r_4:s\leftarrow\sim t$	$\neg t \longrightarrow s$

- ► Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]
- ► Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]
- Cyclic programs: there exists some cyclic relations between program atoms

Example:
$$P = \{ \underbrace{a \leftarrow b.}_{p}, \underbrace{b \leftarrow a.}_{p}, \underbrace{s \lor a \leftarrow \top.}_{p}, \underbrace{s \leftarrow \sim t.}_{p} \}.$$

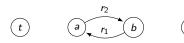


atom	rule	Comp(P)	rule	Comp(P)
а	$a \leftarrow b$, $a \lor s \leftarrow \top$	$a \longrightarrow (b \lor \neg s)$	$r_1: a \leftarrow b$	$b \longrightarrow a$
Ь	$b \leftarrow a$	$b \longrightarrow a$	$r_2:b\leftarrow a$	$a \longrightarrow b$
5	$a \lor s \leftarrow \top$, $s \leftarrow \sim t$	$s \longrightarrow (\neg a \lor \neg t)$	$r_3: a \lor s \leftarrow \top$	$a \lor s$
t	-	$\neg t$	$r_4:s\leftarrow\sim t$	$\neg t \longrightarrow s$

- ► Two assignments $(\{s, \neg a, \neg b\})$ and $\{s, a, b\}$ satisfy Comp(P)
- ▶ Program P has one answer set $(\{s, \neg a, \neg b\})$

- ► Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]
- ► Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]
- Cyclic programs: there exists some cyclic relations between program atoms

Example:
$$P = \{ \underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{s \lor a \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}.$$



atom	rule	Comp(P)	rule	Comp(P)
а	$a \leftarrow b$, $a \lor s \leftarrow \top$	$a \longrightarrow (b \lor \neg s)$	$r_1: a \leftarrow b$	$b \longrightarrow a$
Ь	$b \leftarrow a$	$b \longrightarrow a$	$r_2:b\leftarrow a$	$a \longrightarrow b$
S	$a \lor s \leftarrow \top$, $s \leftarrow \sim t$	$s \longrightarrow (\neg a \lor \neg t)$	$r_3: a \lor s \leftarrow \top$	$a \lor s$
t	-	$\neg t$	$r_4:s\leftarrow\sim t$	$\neg t \longrightarrow s$

- ► Two assignments $(\{s, \neg a, \neg b\})$ and $\{s, a, b\}$ satisfy Comp(P)
- ▶ Program P has one answer set $(\{s, \neg a, \neg b\})$
- Note that $\{\underline{s, \neg a, \neg b}\}$ and $\{\underline{s, a, b}\}$ unjustified

How to count unjustified ones?

- ► Answer Set definition says, EACH ATOM OF AN ANSWER SET MUST BE JUSTIFIED.
- Under Clark's completion, all non-cyclic atoms are justified.
 IT SUFFICES TO JUSTIFY CYCLIC ATOMS ONLY (we formally proved this).

How to count unjustified ones?

- ► Answer Set definition says, EACH ATOM OF AN ANSWER SET MUST BE JUSTIFIED.
- Under Clark's completion, all non-cyclic atoms are justified.
 IT SUFFICES TO JUSTIFY CYCLIC ATOMS ONLY (we formally proved this).
- ► Example: Consider $P = \{\underbrace{a \leftarrow b.}_{r_1} \underbrace{b \leftarrow a.}_{r_2} \underbrace{a \lor s \leftarrow \top.}_{r_3} \underbrace{s \leftarrow \sim t.}_{r_4} \}.$
 - The cyclic atoms: a and b; and the non-cyclic atoms: s and t
 - For answer set $\{s\}$, the rules r_3 or r_4 justify the atom s
 - ▶ Since no rule justifies both atoms a and b, $\{a, b, s\}$ is NOT an answer set.

How to count unjustified ones?

- Answer Set definition says, EACH ATOM OF AN ANSWER SET MUST BE JUSTIFIED.
- Under Clark's completion, all non-cyclic atoms are justified.
 IT SUFFICES TO JUSTIFY CYCLIC ATOMS ONLY (we formally proved this).
- ► Example: Consider $P = \{\underbrace{a \leftarrow b.}_{r_0} \underbrace{b \leftarrow a.}_{r_0} \underbrace{a \lor s \leftarrow \top.}_{r_0} \underbrace{s \leftarrow \sim t.}_{r_0} \}$.
 - The cyclic atoms: a and b; and the non-cyclic atoms: s and t
 - For answer set $\{s\}$, the rules r_3 or r_4 justify the atom s
 - ▶ Since no rule justifies both atoms a and b, $\{a, b, s\}$ is NOT an answer set.

Key idea of Surplus

Counting models of Comp(P) s.t. at least one loop atoms is not justified

► Similar to [KCM2024], for each cyclic atom x, we introduce a new "Copy" variable x' s.t. x' tells whether x is justified or not

- Similar to [KCM2024], for each cyclic atom x, we introduce a new "Copy" variable x' s.t. x' tells whether x is justified or not
 - if x = 0, then x' unit propagates to 0
 - ightharpoonup if x = 1 and justified, then x' unit propagates to 1

- Similar to [KCM2024], for each cyclic atom x, we introduce a new "Copy" variable x' s.t. x' tells whether x is justified or not
 - if x = 0, then x' unit propagates to 0
 - ightharpoonup if x = 1 and justified, then x' unit propagates to 1

Example:
$$P = \{\underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{a \lor s \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}.$$

atom	сору	\mathcal{C}_1	
а	Copy(a) = a'	$a' \longrightarrow a$	
			if x is 0 then x' is 0

- Similar to [KCM2024], for each cyclic atom x, we introduce a new "Copy" variable x' s.t. x' tells whether x is justified or not
 - if x = 0, then x' unit propagates to 0
 - ightharpoonup if x = 1 and justified, then x' unit propagates to 1

Example:
$$P = \{ \underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{a \lor s \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}.$$

atom	сору	\mathcal{C}_1	
a b	Copy(a) = a' Copy(b) = b'	$a' \longrightarrow a$ $b' \longrightarrow b$	if x is 0 then x' is 0

- Similar to [KCM2024], for each cyclic atom x, we introduce a new "Copy" variable x' s.t. x' tells whether x is justified or not
 - if x = 0, then x' unit propagates to 0
 - if x = 1 and justified, then x' unit propagates to 1

$$\qquad \qquad \textbf{Example:} \ \ P = \{ \underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{a \lor s \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}.$$

atom	сору	\mathcal{C}_1	
a b s,t	Copy(a) = a' Copy(b) = b'	$egin{aligned} \mathbf{a}' & \longrightarrow \mathbf{a} \\ \mathbf{b}' & \longrightarrow \mathbf{b} \end{aligned}$	if x is 0 then x' is 0

- Similar to [KCM2024], for each cyclic atom x, we introduce a new "Copy" variable x' s.t. x' tells whether x is justified or not
 - if x = 0, then x' unit propagates to 0
 - ightharpoonup if x = 1 and justified, then x' unit propagates to 1

Example:
$$P = \{ \underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{a \lor s \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}.$$

atom	сору	\mathcal{C}_1	
a b s,t	Copy(a) = a' Copy(b) = b'	$a' \longrightarrow a$ $b' \longrightarrow b$	if x is 0 then x' is 0

rule \mathcal{C}_2
$a \leftarrow b$ $Copy(r_1): b' \longrightarrow a'$

- Similar to [KCM2024], for each cyclic atom x, we introduce a new "Copy" variable x' s.t. x' tells whether x is justified or not
 - if x = 0, then x' unit propagates to 0
 - ightharpoonup if x = 1 and justified, then x' unit propagates to 1

if x is unjustified, then x' does NOT propagate

Example:
$$P = \{ \underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{a \lor s \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}.$$

atom	сору	\mathcal{C}_1	
a b s,t	Copy(a) = a' Copy(b) = b'	$a' \longrightarrow a$ $b' \longrightarrow b$	if x is 0 then x' is 0

rule	\mathcal{C}_2
$r_1: a \leftarrow b$ $r_2: b \leftarrow a$	$\begin{array}{c} Copy(r_1): b' \longrightarrow a' \\ Copy(r_2): a' \longrightarrow b' \end{array}$

if x is 1 and Jus then x' is 1

- Similar to [KCM2024], for each cyclic atom x, we introduce a new "Copy" variable x' s.t. x' tells whether x is justified or not
 - if x = 0, then x' unit propagates to 0
 - ightharpoonup if x = 1 and justified, then x' unit propagates to 1

$$\qquad \qquad \textbf{Example:} \ \ P = \{ \underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{a \lor s \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}.$$

atom	сору	\mathcal{C}_1	
a b s,t	Copy(a) = a' Copy(b) = b'	$a' \longrightarrow a$ $b' \longrightarrow b$	if x is 0 then x' is 0

rule	\mathcal{C}_2	
$r_1: a \leftarrow b$	$Copy(r_1):b'\longrightarrow a'$	
$r_2:b\leftarrow a$	$Copy(r_2): a' \longrightarrow b'$	
$r_3: a \lor s \leftarrow \top$	$Copy(r_3): a' \vee s$	if x is 1 and Jus then x' is 1

- Similar to [KCM2024], for each cyclic atom x, we introduce a new "Copy" variable x' s.t. x' tells whether x is justified or not
 - if x = 0, then x' unit propagates to 0
 - if x = 1 and justified, then x' unit propagates to 1

Example:
$$P = \{ \underbrace{a \leftarrow b.}_{r_1} \quad \underbrace{b \leftarrow a.}_{r_2} \quad \underbrace{a \lor s \leftarrow \top.}_{r_3} \quad \underbrace{s \leftarrow \sim t.}_{r_4} \}.$$

atom	сору	\mathcal{C}_1	
a b s,t	Copy(a) = a' Copy(b) = b'	$a' \longrightarrow a$ $b' \longrightarrow b$	if x is 0 then x' is 0

rule	\mathcal{C}_2	
$r_1: a \leftarrow b$	$Copy(r_1):b'\longrightarrow a'$	
$r_2:b\leftarrow a$	$Copy(r_2): a' \longrightarrow b'$	
$r_3: a \lor s \leftarrow \top$	$Copy(r_3): a' \vee s$	if x is 1 and Jus then x' is 1
$r_4:s\leftarrow \sim t$	-	

$$Copy(P) = C_1 \wedge C_2$$

Let $\tau \models \mathsf{Comp}(P)$

- **Case** 1) τ is an answer set, then all cyclic atoms of τ are justified.
- **(Case** 2) τ is **NOT** an answer set, then some cyclic atoms of τ are **NOT** justified.

 $^{{}^1}F\mid_{\mathcal{T}}$ denotes the unit propagation of τ on F

Let $\tau \models \mathsf{Comp}(P)$

- **Case** 1) τ is an answer set, then all cyclic atoms of τ are justified.
- ▶ (Case 2) τ is NOT an answer set, then some cyclic atoms of τ are NOT justified.

Recall the example: $P = \{\underbrace{a \leftarrow b.}_{r_1} \underbrace{b \leftarrow a.}_{r_2} \underbrace{a \lor s \leftarrow \top.}_{r_3} \underbrace{s \leftarrow \sim t.}_{r_4} \}.$

- $\begin{array}{c} \blacktriangleright \ \mathsf{Comp}(P) = (\mathsf{a} \longrightarrow (\mathsf{b} \vee \neg \mathsf{s})) \wedge (\mathsf{b} \longrightarrow \mathsf{a}) \wedge (\mathsf{s} \longrightarrow (\neg \mathsf{a} \vee \neg \mathsf{t})) \wedge (\mathsf{b} \longrightarrow \mathsf{a}) \wedge (\mathsf{a} \longrightarrow \mathsf{b}) \wedge (\mathsf{a} \vee \mathsf{s}) \wedge (\neg \mathsf{t} \longrightarrow \mathsf{s}) \wedge (\neg \mathsf{t}) \end{array}$
- $\blacktriangleright \ \mathsf{Copy}(P) = (a' \longrightarrow a) \land (b' \longrightarrow b) \land (a' \longrightarrow b') \land (b' \longrightarrow a') \land (a' \lor s)$

 $^{{}^1}F\mid_{\tau}$ denotes the unit propagation of τ on F

Let $\tau \models \mathsf{Comp}(P)$

- **Case** 1) τ is an answer set, then all cyclic atoms of τ are justified.
- ▶ (Case 2) τ is NOT an answer set, then some cyclic atoms of τ are NOT justified.

Recall the example: $P = \{\underbrace{a \leftarrow b.}_{r_1} \underbrace{b \leftarrow a.}_{r_2} \underbrace{a \lor s \leftarrow \top.}_{r_3} \underbrace{s \leftarrow \sim t.}_{r_4} \}.$

- $\begin{array}{c} \blacktriangleright \ \, \mathsf{Comp}(P) = (a \longrightarrow (b \vee \neg s)) \wedge (b \longrightarrow a) \wedge (s \longrightarrow (\neg a \vee \neg t)) \wedge (b \longrightarrow a) \wedge (a \longrightarrow b) \wedge (a \vee s) \wedge (\neg t \longrightarrow s) \wedge (\neg t) \end{array}$
- $\blacktriangleright \ \mathsf{Copy}(P) = (a' \longrightarrow a) \land (b' \longrightarrow b) \land (a' \longrightarrow b') \land (b' \longrightarrow a') \land (a' \lor s)$

au	Comp(P)	$Copy(P) _{ au}$	Remark
$\{s\} \in AS(P)$	=	$a'\mapsto 0,b'\mapsto 0$	a,b are justified
$\{a,b,s\}\not\inAS(P)$	=	$(a' \longrightarrow b') \wedge (b' \longrightarrow a')$	a',b' CAN be false

 $^{{}^1}F\mid_{\tau}$ denotes the unit propagation of τ on F

Let $\tau \models \mathsf{Comp}(P)$

- **Case** 1) τ is an answer set, then all cyclic atoms of τ are justified.
- **Case** 2) τ is NOT an answer set, then some cyclic atoms of τ are NOT justified.

Recall the example: $P = \{\underbrace{a \leftarrow b.}_{r_1} \underbrace{b \leftarrow a.}_{r_2} \underbrace{a \lor s \leftarrow \top.}_{r_3} \underbrace{s \leftarrow \sim t.}_{r_4} \}.$

- $\begin{array}{c} \blacktriangleright \ \mathsf{Comp}(P) = (a \longrightarrow (b \vee \neg s)) \wedge (b \longrightarrow a) \wedge (s \longrightarrow (\neg a \vee \neg t)) \wedge (b \longrightarrow a) \wedge (a \longrightarrow b) \wedge (a \vee s) \wedge (\neg t \longrightarrow s) \wedge (\neg t) \end{array}$
- $\blacktriangleright \ \mathsf{Copy}(P) = (a' \longrightarrow a) \land (b' \longrightarrow b) \land (a' \longrightarrow b') \land (b' \longrightarrow a') \land (a' \lor s)$

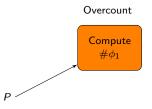
au	Comp(P)	$Copy(P) _{ au}$	Remark
$\{s\} \in AS(P)$	=	$a'\mapsto 0,b'\mapsto 0$	a, b are justified
$\{a,b,s\} \not\in AS(P)$	⊨	$(a' \longrightarrow b') \wedge (b' \longrightarrow a')$	a',b' CAN be false

 τ is a non-justified models of Comp(P):¹

Some loop atoms of au can be assigned false while still satisfying Copy(P) $|_{ au}$

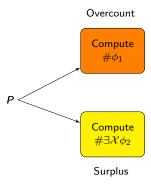
 $^{{}^{1}}F\mid_{\tau}$ denotes the unit propagation of τ on F

Compute ϕ_1, ϕ_2 , and \mathcal{X}



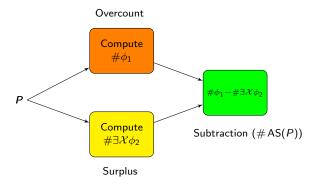
Overcount: $\phi_1 = \mathsf{Comp}(P)$

Compute ϕ_1, ϕ_2 , and \mathcal{X}



- ightharpoonup Overcount: $\phi_1 = \mathsf{Comp}(P)$
- Surplus: $\phi_2 = \mathsf{Comp}(P) \land \mathsf{Copy}(P)' \land \mathsf{Copy}(P)^* \land \bigwedge_{x \in \mathsf{LA}(P)} (x' \le x^*) \land \bigvee_{x \in \mathsf{LA}(P)} (x' < x^*),$ and $\mathcal{X} = \bigcup_{x \in \mathsf{LA}(P)} \{x', x^*\}$
 - ► LA(P) denotes loop atoms of P
 - $ightharpoonup \operatorname{Copy}(P)^*$ and $\operatorname{Copy}(P)^*$ are two sets of $\operatorname{Copy}(P)$
 - ▶ $\bigwedge_{x \in LA(P)} (x' \le x^*) \land \bigvee_{x \in LA(P)} (x' < x^*)$ enforces that at least one of the loop atoms can be set to false while satisfying Comp(P) and Copy(P)

Compute ϕ_1, ϕ_2 , and \mathcal{X}



- Overcount: $\phi_1 = \mathsf{Comp}(P)$
- Surplus: $\phi_2 = \mathsf{Comp}(P) \land \mathsf{Copy}(P)' \land \mathsf{Copy}(P)^* \land \bigwedge_{x \in \mathsf{LA}(P)} (x' \le x^*) \land \bigvee_{x \in \mathsf{LA}(P)} (x' < x^*),$ and $\mathcal{X} = \bigcup_{x \in \mathsf{LA}(P)} \{x', x^*\}$
 - ► LA(P) denotes loop atoms of P
 - ightharpoonup Copy(P)' and $Copy(P)^*$ are two sets of Copy(P)
 - ▶ $\bigwedge_{x \in LA(P)} (x' \le x^*) \land \bigvee_{x \in LA(P)} (x' < x^*)$ enforces that at least one of the loop atoms can be set to false while satisfying Comp(P) and Copy(P)

Experimental Evaluation

Benchmark sources:

1. QBF [KES ⁺ 2022]	2. strategic companies [L2005]
3. abstract argumentation [GMR ⁺ 2015]	4. PC configuration [FGR2022]
5. minimal diagnosis [GST ⁺ 2008]	6. system biology [TBP ⁺ 2024]
7. random instance generator [ART2017]	-

Experimental Evaluation

Benchmark sources:

1. QBF [KES ⁺ 2022]	2. strategic companies [L2005]
3. abstract argumentation [GMR ⁺ 2015]	4. PC configuration [FGR2022]
5. minimal diagnosis [GST ⁺ 2008]	6. system biology [TBP ⁺ 2024]
7. random instance generator [ART2017]	-

Baselines:

1. Clingo [GKS2012]	2. Wasp [ADL ⁺ 2015]	3. DynASP [FHM ⁺ 2017]
---------------------	---------------------------------	-----------------------------------

Experimental Evaluation

Benchmark sources:

1. QBF [KES ⁺ 2022]	2. strategic companies [L2005]
3. abstract argumentation [GMR ⁺ 2015]	4. PC configuration [FGR2022]
5. minimal diagnosis [GST ⁺ 2008]	6. system biology [TBP ⁺ 2024]
7. random instance generator [ART2017]	-

Baselines:

1. Clingo [GKS2012] 2. Wasp [ADL ⁺ 2015]	3. DynASP [FHM ⁺ 2017]
---	-----------------------------------

Experimental setup:

A single core, with a time limit of 5000 seconds, a memory limit of $8\,\mbox{GB}$

Experimental Results

PAR-2: Penalized average runtime that assigns $2 \times$ for each unsolved instances

	clingo	DynASP	Wasp	SharpASP-SR
#Solved (1125)	708	89	432	825
PAR2	4118	9212	6204	2939

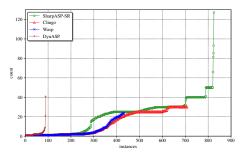
Experimental Results

PAR-2: Penalized average runtime that assigns $2 \times$ for each unsolved instances

	clingo	DynASP	Wasp	SharpASP-SR
#Solved (1125)	708	89	432	825
PAR2	4118	9212	6204	2939
			clingo (≤	$10^4) +$
	clingo	DynASP	Wasp	SharpASP-SR
#Solved (1125)	708	377	442	918
PAR2	4118	4790	4404	1600

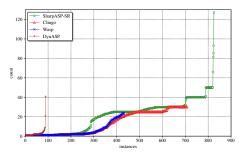
Strengths and Weaknesses

■ Strengths: SharpASP-SR counts instances with large number of answer sets



Strengths and Weaknesses

■ Strengths: SharpASP-SR counts instances with large number of answer sets



 \blacksquare Weaknesses: SharpASP-SR struggles with instances having a large |LA(P)|

LA(<i>P</i>)	Σ	clingo	DynASP	Wasp	SharpASP-SR
[1, 100]	399	248	87	165	386
[101, 1000]	519	316	2	142	398
> 1000	207	144	0	125	41

Conclusion

- We propose SharpASP-SR, a subtractive reduction based approach for answer set counting for disjunctive logic programs
- We reduce answer set counting to projected model counting by exploiting an alternative characterization of non-justified models
- Empirically SharpASP-SR outperforms existing counters on instances with large answer set counts

Conclusion

- We propose SharpASP-SR, a subtractive reduction based approach for answer set counting for disjunctive logic programs
- We reduce answer set counting to projected model counting by exploiting an alternative characterization of non-justified models
- Empirically SharpASP-SR outperforms existing counters on instances with large answer set counts

https://github.com/meelgroup/SharpASP-SR