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Answer Set Programming (ASP)

» Roots in logic programming and non-monotonic reasoning

» A rule-based language for problem encoding

hV .. hg < b1,...,bg,~byi1,...,~byim.
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> An ASP program P = set of rules

» Definition: Program P is called disjunctive if 3r € P s.t. |Head(r)|> 1 [EG95];
otherwise, program P is called normal

»> The model of P is an answer set (denoted as AS(P))

> Answer set programming is based on Justification — everything is false unless
there are some justifications.
> Consider an ASP program, P = {a<-b. b<-a. aVs«T. s«~t.}
r rn r ry
» {s} € AS(P); since s is justified by r3 or rs
> {a,b,s} & AS(P); since a and b are NOT justified
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head body

> An ASP program P = set of rules

» Definition: Program P is called disjunctive if 3r € P s.t. |Head(r)|> 1 [EG95];
otherwise, program P is called normal

»> The model of P is an answer set (denoted as AS(P))

> Answer set programming is based on Justification — everything is false unless
there are some justifications.

> Consider an ASP program, P = {a<-b. b<-a. aVs«T. s«~t.}
r rn r ry
» {s} € AS(P); since s is justified by r3 or rs
> {a,b,s} & AS(P); since a and b are NOT justified

> Answer Set Counting: Given a (disjunctive) program P, find |AS(P)|
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State-of-the-art ASP Counters and Our Contribution

Normal Logic Program
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Complexity: #-co-NP [FHM'17]
Theory & Implementation
JN2011;J2006;ACM*2015;FHM " 17
EHK2024;KCM2024;FGH 2024

Only Theory
HK2023

Our Contribution: SharpASP-SR
» focus on both theory and implementation
» subtraction-based approach

> formulate to projected model counting
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SharpASP-SR: High-level Methodology

Overcount

Given the disjunctive logic program P

» Overcount: Overcount the number of answer sets (#¢1)
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SharpASP-SR: High-level Methodology

Overcount

Compute

PE Subtraction (# AS(P))

Surplus

Given the disjunctive logic program P
» Overcount: Overcount the number of answer sets (#¢1)
> . Carefully count the surplus (#3X¢2)
P> Subtraction: #¢1 — #3X P2
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Overcount (¢1)

» Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]
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» Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]
» Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]
» Cyclic programs: there exists some cyclic relations between program atoms

Example: P = {a<=b. b¢a. sVacT. s«—~t.}

n rn &} ra
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atom  rule Comp(P)
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»> Two assignments ({s, —a, —b} and {s, a, b}) satisfy Comp(P)

»> Program P has one answer set ({s, —a, —b})
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Overcount (¢1)

» Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]
» Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]

» Cyclic programs: there exists some cyclic relations between program atoms

Example: P = {a<=b. b¢a. sVacT. s«—~t.}

n rn r ry
r2

® G O
atom  rule Comp(P) rule Comp(P)
a a+ b, avVs+ T a— (bV-s) n:a<+b b— a
b b+ a b— a rn:b+ a a— b
s aVs+ T,s+~t s—(naV-t) mn:aVs<+ T aVs
t - -t ry S < ~t -t — s

»> Two assignments ({s, —a, —b} and {s, a, b}) satisfy Comp(P)
»> Program P has one answer set ({s, —a, —b})
> Note that {s,—a,~b} and { s,a,b }

Justified unjustified
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How to count unjustified ones?

> Answer Set definition says, EACH ATOM OF AN ANSWER SET MUST BE JUSTIFIED.

» Under Clark’s completion, all non-cyclic atoms are justified.
IT SUFFICES TO JUSTIFY CYCLIC ATOMS ONLY (we formally proved this).
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How to count unjustified ones?

» Answer Set definition says, EACH ATOM OF AN ANSWER SET MUST BE JUSTIFIED.

» Under Clark’s completion, all non-cyclic atoms are justified.
IT SUFFICES TO JUSTIFY CYCLIC ATOMS ONLY (we formally proved this).
» Example: Consider P = {a<—b. b<a. aVs«T. s« ~t.}.
n r r ra
» The cyclic atoms: a and b; and the non-cyclic atoms: s and t
» For answer set {s}, the rules r3 or rs justify the atom s
» Since no rule justifies both atoms a and b, {a, b,s} is NOT an answer set.

Key idea of Surplus
Counting models of Comp(P) s.t. at least one loop atoms is not justified
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How to check “Justification” of atoms?

» Similar to [KCM2024], for each cyclic atom x, we introduce a new “Copy” variable
x" s.t. x' tells whether x is justified or not
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How to check “Justification” of atoms?

> Similar to [KCM2024], for each cyclic atom x, we introduce a new
x" s.t. x' tells whether x is justified or not

» if x =0, then x’ unit propagates to 0
» if x = 1 and justified, then x’ unit propagates to 1
if x is unjustified, then x’ does NOT propagate
» Example: P ={a«-b. b<a. aVs«T. s«~t.}

“Copy” variable

n r r3 s
atom copy C1
a Copy(a) = &’ a—a

if x is 0 then x’ is 0
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x" s.t. x' tells whether x is justified or not

» if x =0, then x’ unit propagates to 0
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x" s.t. x' tells whether x is justified or not

» if x =0, then x’ unit propagates to 0
» if x = 1 and justified, then x’ unit propagates to 1

if x is unjustified, then x’ does NOT propagate
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atom copy C1
a Copy(a) = &’ a—a
b Copy(b) = b’ b’ — b if x is 0 then x’ is 0
st - -
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rn:a<b Copy(r): b’ — @’
b+ a Copy(r):a — b’
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How to check “Justification” of atoms?

» Similar to

[KCM2024], for each cyclic atom x, we introduce a new “Copy” variable

x" s.t. x' tells whether x is justified or not

» if x =0, then x’ unit propagates to 0
» if x = 1 and justified, then x’ unit propagates to 1

if x is unjustified, then x’ does NOT propagate
> Example: P ={a«b. b+a. aVs«T. s«~t.}.

rn r 3 r4

atom copy C1
a Copy(a) = &’ a—a
b Copy(b) = b’ b’ — b if x is 0 then x’ is 0
st - -

rule Ca
rn:a<b Copy(r): b’ — @’
rn:b+a Copy(r):a — b’
r3:aVs<« T Copy(rs):a' Vs if x is 1 and Jus then x’ is 1
rg:Ss4—~t =

Copy(P) =C1 ACo
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How to check “Justification”?

Let 7 = Comp(P)
> (Case 1) 7 is an answer set, then all cyclic atoms of 7 are justified.

> (Case 2) 7 is NOT an answer set, then some cyclic atoms of 7 are NOT justified.

s | - denotes the unit propagation of T on F
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How to check “Justification”?

Let 7 = Comp(P)
> (Case 1) 7 is an answer set, then all cyclic atoms of 7 are justified.
> (Case 2) 7 is NOT an answer set, then some cyclic atoms of 7 are NOT justified.
Recall the example: P = {a<=b. b<—a. aVs«T. s« ~t.}.
n rn r3 ry
> Comp(P)=(a— (bV-s))A(b— a)A(s — (maV t))A(b—
a)A(a— b)A(aVs)A (-t — s)A (L)
» Copy(P)=(a — a)A(bl — b)A (s — D)A (B — a')A (' Vs)

T Comp(P) Copy(P)|~ Remark
{s} € AS(P) = a’—0,b—0 a, b are justified
{a,b,s}¢AS(P) | (a8 — ')A (b — a’) a',b’ CAN be false

7 is a non-justified models of Comp(P):!

Some loop atoms of T can be assigned false while still satisfying Copy(P) |-

s | - denotes the unit propagation of T on F
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Compute ¢1, ¢2, and X

Overcount

» Overcount: ¢1 = Comp(P)
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» LA(P) denotes loop atoms of P

» Copy(P)’ and Copy(P)* are two sets of Copy(P)
> Nvciae) (X" = XAV ciap) (X" < x7) enforces that at least one of the

loop atoms can be set to false while satisfying Comp(P) and Copy(P)
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Experimental Evaluation

Benchmark sources:

~N Ol W

. QBF [KEST2022]

. abstract argumentation [GMR"2015]
. minimal diagnosis [GST "2008]

. random instance generator [ART2017]

o~ N

strategic companies [L2005]
. PC configuration [FGR2022]
system biology [TBP2024]
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Experimental Evaluation

Benchmark sources:

1. QBF [KEST2022] 2. strategic companies [L2005]
3. abstract argumentation [GMR2015] 4. PC configuration [FGR2022]
5. minimal diagnosis [GST " 2008] 6. system biology [TBP2024]
7. random instance generator [ART2017] -
Baselines:
1. Clingo [GKS2012] 2. Wasp [ADL"2015] 3. DynASP [FHM'2017]

Experimental setup:
A single core, with a time limit of 5000 seconds, a memory limit of 8 GB
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Experimental Results

PAR-2: Penalized average runtime that
assigns 2x for each unsolved instances

clingo DynASP Wasp SharpASP-SR
#Solved (1125) 708 89 432 825
PAR2 4118 9212 6204 2939
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Experimental Results

PAR-2: Penalized average runtime that
assigns 2x for each unsolved instances

clingo DynASP Wasp SharpASP-SR
#Solved (1125) 708 89 432 825
PAR2 4118 9212 6204 2939
\ clingo (< 10%) +
clingo DynASP Wasp SharpASP-SR
#Solved (1125) 708 377 442 918
PAR2 4118 4790 4404 1600




Strengths and Weaknesses

ol Strengths: SharpASP-SR counts instances with large number of answer sets

count
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Strengths and Weaknesses

ol Strengths: SharpASP-SR counts instances with large number of answer sets

count

120

1004~ Dynasp

—o— SharpASP-SR

7
&

300 400 s
instances.

i@ Weaknesses: SharpASP-SR struggles with instances having a large |LA(P)|

[LA(P)| > clingo DynASP  Wasp SharpASP-SR
[1,100] 399 248 87 165 386
[101,1000] 519 316 2 142 398

> 1000 207 144 0 125 41
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Conclusion

» We propose SharpASP-SR, a subtractive reduction based approach for answer set
counting for disjunctive logic programs

» We reduce answer set counting to projected model counting by exploiting an
alternative characterization of non-justified models

> Empirically SharpASP-SR outperforms existing counters on instances with large
answer set counts
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