
Counting Answer Sets of Disjunctive Answer Set Programs

Mohimenul Kabira, Supratik Chakrabortyb, and Kuldeep S. Meelc,d

aNational University of Singapore
b Indian Institute of Technology, Bombay

c Georgia Institute of Technology
d University of Toronto

41st International Conference on Logic Programming (ICLP), Rende, Italy, 2025

Slide 1/ 13

Answer Set Programming (ASP)

I Roots in logic programming and non-monotonic reasoning

I A rule-based language for problem encoding

h1∨ ... h`
head

← b1, ... ,bk ,∼ bk+1, ... ,∼ bk+m.
body

I An ASP program P ≡ set of rules

I Definition: Program P is called disjunctive if ∃r ∈ P s.t. |Head(r)|> 1 [EG95];
otherwise, program P is called normal

I The model of P is an answer set (denoted as AS(P))

I Answer set programming is based on Justification — everything is false unless
there are some justifications.

I Consider an ASP program, P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}

I {s} ∈ AS(P); since s is justified by r3 or r4
I {a, b, s} 6∈ AS(P); since a and b are NOT justified

I Answer Set Counting: Given a (disjunctive) program P, find |AS(P)|

Slide 2/ 13

Answer Set Programming (ASP)

I Roots in logic programming and non-monotonic reasoning

I A rule-based language for problem encoding

h1∨ ... h`
head

← b1, ... ,bk ,∼ bk+1, ... ,∼ bk+m.
body

I An ASP program P ≡ set of rules

I Definition: Program P is called disjunctive if ∃r ∈ P s.t. |Head(r)|> 1 [EG95];
otherwise, program P is called normal

I The model of P is an answer set (denoted as AS(P))

I Answer set programming is based on Justification — everything is false unless
there are some justifications.

I Consider an ASP program, P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}

I {s} ∈ AS(P); since s is justified by r3 or r4
I {a, b, s} 6∈ AS(P); since a and b are NOT justified

I Answer Set Counting: Given a (disjunctive) program P, find |AS(P)|

Slide 2/ 13

Answer Set Programming (ASP)

I Roots in logic programming and non-monotonic reasoning

I A rule-based language for problem encoding

h1∨ ... h`
head

← b1, ... ,bk ,∼ bk+1, ... ,∼ bk+m.
body

I An ASP program P ≡ set of rules

I Definition: Program P is called disjunctive if ∃r ∈ P s.t. |Head(r)|> 1 [EG95];
otherwise, program P is called normal

I The model of P is an answer set (denoted as AS(P))

I Answer set programming is based on Justification — everything is false unless
there are some justifications.

I Consider an ASP program, P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}

I {s} ∈ AS(P); since s is justified by r3 or r4
I {a, b, s} 6∈ AS(P); since a and b are NOT justified

I Answer Set Counting: Given a (disjunctive) program P, find |AS(P)|

Slide 2/ 13

Answer Set Programming (ASP)

I Roots in logic programming and non-monotonic reasoning

I A rule-based language for problem encoding

h1∨ ... h`
head

← b1, ... ,bk ,∼ bk+1, ... ,∼ bk+m.
body

I An ASP program P ≡ set of rules

I Definition: Program P is called disjunctive if ∃r ∈ P s.t. |Head(r)|> 1 [EG95];
otherwise, program P is called normal

I The model of P is an answer set (denoted as AS(P))

I Answer set programming is based on Justification — everything is false unless
there are some justifications.

I Consider an ASP program, P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}

I {s} ∈ AS(P); since s is justified by r3 or r4
I {a, b, s} 6∈ AS(P); since a and b are NOT justified

I Answer Set Counting: Given a (disjunctive) program P, find |AS(P)|

Slide 2/ 13

State-of-the-art ASP Counters and Our Contribution

Normal Logic Program

Complexity: #P [J2006]

Theory & Implementation
JN2011;J2006;ACM+2015;FHM+17

EHK2024;KCM2024;FGH+2024

Disjunctive Logic Program

Complexity: #·co-NP [FHM+17]

Only Theory
HK2023

Our Contribution: SharpASP-SR
I focus on both theory and implementation

I subtraction-based approach

I formulate to projected model counting

Slide 3/ 13

State-of-the-art ASP Counters and Our Contribution

Normal Logic Program

Complexity: #P [J2006]

Theory & Implementation
JN2011;J2006;ACM+2015;FHM+17

EHK2024;KCM2024;FGH+2024

Disjunctive Logic Program

Complexity: #·co-NP [FHM+17]

Only Theory
HK2023

Our Contribution: SharpASP-SR
I focus on both theory and implementation

I subtraction-based approach

I formulate to projected model counting

Slide 3/ 13

State-of-the-art ASP Counters and Our Contribution

Normal Logic Program

Complexity: #P [J2006]

Theory & Implementation
JN2011;J2006;ACM+2015;FHM+17

EHK2024;KCM2024;FGH+2024

Disjunctive Logic Program

Complexity: #·co-NP [FHM+17]

Only Theory
HK2023

Our Contribution: SharpASP-SR
I focus on both theory and implementation

I subtraction-based approach

I formulate to projected model counting

Slide 3/ 13

SharpASP-SR: High-level Methodology

Compute
#φ1

P

Overcount

Compute
#∃Xφ2

P

Surplus

#φ1−#∃Xφ2

Subtraction (# AS(P))

Given the disjunctive logic program P

I Overcount: Overcount the number of answer sets (#φ1)

I Surplus: Carefully count the surplus (#∃Xφ2)

I Subtraction: #φ1 −#∃Xφ2

Slide 4/ 13

SharpASP-SR: High-level Methodology

Compute
#φ1

P

Overcount

Compute
#∃Xφ2

P

Surplus

#φ1−#∃Xφ2

Subtraction (# AS(P))

Given the disjunctive logic program P

I Overcount: Overcount the number of answer sets (#φ1)

I Surplus: Carefully count the surplus (#∃Xφ2)

I Subtraction: #φ1 −#∃Xφ2

Slide 4/ 13

SharpASP-SR: High-level Methodology

Compute
#φ1

P

Overcount

Compute
#∃Xφ2

P

Surplus

#φ1−#∃Xφ2

Subtraction (# AS(P))

Given the disjunctive logic program P

I Overcount: Overcount the number of answer sets (#φ1)

I Surplus: Carefully count the surplus (#∃Xφ2)

I Subtraction: #φ1 −#∃Xφ2

Slide 4/ 13

Overcount (φ1)

I Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]

I Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]

I Cyclic programs: there exists some cyclic relations between program atoms

Example: P = {a←b.
r1

b←a.
r2

s∨a←>.
r3

s←∼ t.
r4

}.

a b st

r2

r1

atom rule Comp(P)

rule Comp(P)

a a← b, a ∨ s ← > a −→ (b ∨ ¬s)

r1 : a← b b −→ a

b b ← a b −→ a

r2 : b ← a a −→ b

s a∨s ← >, s ← ∼ t s −→ (¬a ∨ ¬t)

r3 : a ∨ s ← > a ∨ s

t - ¬t

r4 : s ← ∼ t ¬t −→ s

I Two assignments ({s,¬a,¬b} and {s, a, b}) satisfy Comp(P)

I Program P has one answer set ({s,¬a,¬b})
I Note that {s,¬a,¬b

justified

} and { s,a,b
unjustified

}

Slide 5/ 13

Overcount (φ1)

I Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]

I Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]

I Cyclic programs: there exists some cyclic relations between program atoms

Example: P = {a←b.
r1

b←a.
r2

s∨a←>.
r3

s←∼ t.
r4

}.

a b st

r2

r1

atom rule Comp(P)

rule Comp(P)

a a← b, a ∨ s ← > a −→ (b ∨ ¬s)

r1 : a← b b −→ a

b b ← a b −→ a

r2 : b ← a a −→ b

s a∨s ← >, s ← ∼ t s −→ (¬a ∨ ¬t)

r3 : a ∨ s ← > a ∨ s

t - ¬t

r4 : s ← ∼ t ¬t −→ s

I Two assignments ({s,¬a,¬b} and {s, a, b}) satisfy Comp(P)

I Program P has one answer set ({s,¬a,¬b})
I Note that {s,¬a,¬b

justified

} and { s,a,b
unjustified

}

Slide 5/ 13

Overcount (φ1)

I Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]

I Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]

I Cyclic programs: there exists some cyclic relations between program atoms

Example: P = {a←b.
r1

b←a.
r2

s∨a←>.
r3

s←∼ t.
r4

}.

a b st

r2

r1

atom rule Comp(P)

rule Comp(P)

a a← b, a ∨ s ← > a −→ (b ∨ ¬s)

r1 : a← b b −→ a

b b ← a b −→ a

r2 : b ← a a −→ b

s a∨s ← >, s ← ∼ t s −→ (¬a ∨ ¬t)

r3 : a ∨ s ← > a ∨ s

t - ¬t

r4 : s ← ∼ t ¬t −→ s

I Two assignments ({s,¬a,¬b} and {s, a, b}) satisfy Comp(P)

I Program P has one answer set ({s,¬a,¬b})
I Note that {s,¬a,¬b

justified

} and { s,a,b
unjustified

}

Slide 5/ 13

Overcount (φ1)

I Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]

I Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]

I Cyclic programs: there exists some cyclic relations between program atoms

Example: P = {a←b.
r1

b←a.
r2

s∨a←>.
r3

s←∼ t.
r4

}.

a b st

r2

r1

atom rule Comp(P) rule Comp(P)
a a← b, a ∨ s ← > a −→ (b ∨ ¬s) r1 : a← b b −→ a
b b ← a b −→ a r2 : b ← a a −→ b
s a∨s ← >, s ← ∼ t s −→ (¬a ∨ ¬t) r3 : a ∨ s ← > a ∨ s
t - ¬t r4 : s ← ∼ t ¬t −→ s

I Two assignments ({s,¬a,¬b} and {s, a, b}) satisfy Comp(P)

I Program P has one answer set ({s,¬a,¬b})
I Note that {s,¬a,¬b

justified

} and { s,a,b
unjustified

}

Slide 5/ 13

Overcount (φ1)

I Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]

I Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]

I Cyclic programs: there exists some cyclic relations between program atoms

Example: P = {a←b.
r1

b←a.
r2

s∨a←>.
r3

s←∼ t.
r4

}.

a b st

r2

r1

atom rule Comp(P) rule Comp(P)
a a← b, a ∨ s ← > a −→ (b ∨ ¬s) r1 : a← b b −→ a
b b ← a b −→ a r2 : b ← a a −→ b
s a∨s ← >, s ← ∼ t s −→ (¬a ∨ ¬t) r3 : a ∨ s ← > a ∨ s
t - ¬t r4 : s ← ∼ t ¬t −→ s

I Two assignments ({s,¬a,¬b} and {s, a, b}) satisfy Comp(P)

I Program P has one answer set ({s,¬a,¬b})

I Note that {s,¬a,¬b
justified

} and { s,a,b
unjustified

}

Slide 5/ 13

Overcount (φ1)

I Clark completion Comp(P) provides a linear size translation to CNF [Clark1978]

I Comp(P) overcounts |AS(P)| particularly for cyclic programs [LL2003]

I Cyclic programs: there exists some cyclic relations between program atoms

Example: P = {a←b.
r1

b←a.
r2

s∨a←>.
r3

s←∼ t.
r4

}.

a b st

r2

r1

atom rule Comp(P) rule Comp(P)
a a← b, a ∨ s ← > a −→ (b ∨ ¬s) r1 : a← b b −→ a
b b ← a b −→ a r2 : b ← a a −→ b
s a∨s ← >, s ← ∼ t s −→ (¬a ∨ ¬t) r3 : a ∨ s ← > a ∨ s
t - ¬t r4 : s ← ∼ t ¬t −→ s

I Two assignments ({s,¬a,¬b} and {s, a, b}) satisfy Comp(P)

I Program P has one answer set ({s,¬a,¬b})
I Note that {s,¬a,¬b

justified

} and { s,a,b
unjustified

}

Slide 5/ 13

How to count unjustified ones?

I Answer Set definition says, each atom of an answer set must be justified.

I Under Clark’s completion, all non-cyclic atoms are justified.
It suffices to justify cyclic atoms only (we formally proved this).

I Example: Consider P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

I The cyclic atoms: a and b; and the non-cyclic atoms: s and t
I For answer set {s}, the rules r3 or r4 justify the atom s
I Since no rule justifies both atoms a and b, {a, b, s} is NOT an answer set.

Key idea of Surplus

Counting models of Comp(P) s.t. at least one loop atoms is not justified

Slide 6/ 13

How to count unjustified ones?

I Answer Set definition says, each atom of an answer set must be justified.

I Under Clark’s completion, all non-cyclic atoms are justified.
It suffices to justify cyclic atoms only (we formally proved this).

I Example: Consider P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

I The cyclic atoms: a and b; and the non-cyclic atoms: s and t
I For answer set {s}, the rules r3 or r4 justify the atom s
I Since no rule justifies both atoms a and b, {a, b, s} is NOT an answer set.

Key idea of Surplus

Counting models of Comp(P) s.t. at least one loop atoms is not justified

Slide 6/ 13

How to count unjustified ones?

I Answer Set definition says, each atom of an answer set must be justified.

I Under Clark’s completion, all non-cyclic atoms are justified.
It suffices to justify cyclic atoms only (we formally proved this).

I Example: Consider P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

I The cyclic atoms: a and b; and the non-cyclic atoms: s and t
I For answer set {s}, the rules r3 or r4 justify the atom s
I Since no rule justifies both atoms a and b, {a, b, s} is NOT an answer set.

Key idea of Surplus

Counting models of Comp(P) s.t. at least one loop atoms is not justified

Slide 6/ 13

How to check “Justification” of atoms?

I Similar to [KCM2024], for each cyclic atom x , we introduce a new “Copy” variable
x ′ s.t. x ′ tells whether x is justified or not

I if x = 0, then x ′ unit propagates to 0
I if x = 1 and justified, then x ′ unit propagates to 1

if x is unjustified, then x ′ does NOT propagate

I Example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

atom copy C1

a Copy(a) = a′ a′ −→ a
if x is 0 then x′ is 0b Copy(b) = b′ b′ −→ b

s,t - -

rule C2

r1 : a← b Copy(r1) : b′ −→ a′

r2 : b ← a Copy(r2) : a′ −→ b′

if x is 1 and Jus then x′ is 1r3 : a ∨ s ← > Copy(r3) : a′ ∨ s
r4 : s ← ∼ t -

Copy(P) = C1 ∧ C2

Slide 7/ 13

How to check “Justification” of atoms?

I Similar to [KCM2024], for each cyclic atom x , we introduce a new “Copy” variable
x ′ s.t. x ′ tells whether x is justified or not

I if x = 0, then x ′ unit propagates to 0
I if x = 1 and justified, then x ′ unit propagates to 1

if x is unjustified, then x ′ does NOT propagate

I Example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

atom copy C1

a Copy(a) = a′ a′ −→ a
if x is 0 then x′ is 0b Copy(b) = b′ b′ −→ b

s,t - -

rule C2

r1 : a← b Copy(r1) : b′ −→ a′

r2 : b ← a Copy(r2) : a′ −→ b′

if x is 1 and Jus then x′ is 1r3 : a ∨ s ← > Copy(r3) : a′ ∨ s
r4 : s ← ∼ t -

Copy(P) = C1 ∧ C2

Slide 7/ 13

How to check “Justification” of atoms?

I Similar to [KCM2024], for each cyclic atom x , we introduce a new “Copy” variable
x ′ s.t. x ′ tells whether x is justified or not

I if x = 0, then x ′ unit propagates to 0
I if x = 1 and justified, then x ′ unit propagates to 1

if x is unjustified, then x ′ does NOT propagate

I Example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

atom copy C1

a Copy(a) = a′ a′ −→ a
if x is 0 then x′ is 0

b Copy(b) = b′ b′ −→ b
s,t - -

rule C2

r1 : a← b Copy(r1) : b′ −→ a′

r2 : b ← a Copy(r2) : a′ −→ b′

if x is 1 and Jus then x′ is 1r3 : a ∨ s ← > Copy(r3) : a′ ∨ s
r4 : s ← ∼ t -

Copy(P) = C1 ∧ C2

Slide 7/ 13

How to check “Justification” of atoms?

I Similar to [KCM2024], for each cyclic atom x , we introduce a new “Copy” variable
x ′ s.t. x ′ tells whether x is justified or not

I if x = 0, then x ′ unit propagates to 0
I if x = 1 and justified, then x ′ unit propagates to 1

if x is unjustified, then x ′ does NOT propagate

I Example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

atom copy C1

a Copy(a) = a′ a′ −→ a
if x is 0 then x′ is 0b Copy(b) = b′ b′ −→ b

s,t - -

rule C2

r1 : a← b Copy(r1) : b′ −→ a′

r2 : b ← a Copy(r2) : a′ −→ b′

if x is 1 and Jus then x′ is 1r3 : a ∨ s ← > Copy(r3) : a′ ∨ s
r4 : s ← ∼ t -

Copy(P) = C1 ∧ C2

Slide 7/ 13

How to check “Justification” of atoms?

I Similar to [KCM2024], for each cyclic atom x , we introduce a new “Copy” variable
x ′ s.t. x ′ tells whether x is justified or not

I if x = 0, then x ′ unit propagates to 0
I if x = 1 and justified, then x ′ unit propagates to 1

if x is unjustified, then x ′ does NOT propagate

I Example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

atom copy C1

a Copy(a) = a′ a′ −→ a
if x is 0 then x′ is 0b Copy(b) = b′ b′ −→ b

s,t - -

rule C2

r1 : a← b Copy(r1) : b′ −→ a′

r2 : b ← a Copy(r2) : a′ −→ b′

if x is 1 and Jus then x′ is 1r3 : a ∨ s ← > Copy(r3) : a′ ∨ s
r4 : s ← ∼ t -

Copy(P) = C1 ∧ C2

Slide 7/ 13

How to check “Justification” of atoms?

I Similar to [KCM2024], for each cyclic atom x , we introduce a new “Copy” variable
x ′ s.t. x ′ tells whether x is justified or not

I if x = 0, then x ′ unit propagates to 0
I if x = 1 and justified, then x ′ unit propagates to 1

if x is unjustified, then x ′ does NOT propagate

I Example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

atom copy C1

a Copy(a) = a′ a′ −→ a
if x is 0 then x′ is 0b Copy(b) = b′ b′ −→ b

s,t - -

rule C2

r1 : a← b Copy(r1) : b′ −→ a′

r2 : b ← a Copy(r2) : a′ −→ b′

if x is 1 and Jus then x′ is 1r3 : a ∨ s ← > Copy(r3) : a′ ∨ s
r4 : s ← ∼ t -

Copy(P) = C1 ∧ C2

Slide 7/ 13

How to check “Justification” of atoms?

I Similar to [KCM2024], for each cyclic atom x , we introduce a new “Copy” variable
x ′ s.t. x ′ tells whether x is justified or not

I if x = 0, then x ′ unit propagates to 0
I if x = 1 and justified, then x ′ unit propagates to 1

if x is unjustified, then x ′ does NOT propagate

I Example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

atom copy C1

a Copy(a) = a′ a′ −→ a
if x is 0 then x′ is 0b Copy(b) = b′ b′ −→ b

s,t - -

rule C2

r1 : a← b Copy(r1) : b′ −→ a′

r2 : b ← a Copy(r2) : a′ −→ b′

if x is 1 and Jus then x′ is 1

r3 : a ∨ s ← > Copy(r3) : a′ ∨ s
r4 : s ← ∼ t -

Copy(P) = C1 ∧ C2

Slide 7/ 13

How to check “Justification” of atoms?

I Similar to [KCM2024], for each cyclic atom x , we introduce a new “Copy” variable
x ′ s.t. x ′ tells whether x is justified or not

I if x = 0, then x ′ unit propagates to 0
I if x = 1 and justified, then x ′ unit propagates to 1

if x is unjustified, then x ′ does NOT propagate

I Example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

atom copy C1

a Copy(a) = a′ a′ −→ a
if x is 0 then x′ is 0b Copy(b) = b′ b′ −→ b

s,t - -

rule C2

r1 : a← b Copy(r1) : b′ −→ a′

r2 : b ← a Copy(r2) : a′ −→ b′

if x is 1 and Jus then x′ is 1r3 : a ∨ s ← > Copy(r3) : a′ ∨ s

r4 : s ← ∼ t -

Copy(P) = C1 ∧ C2

Slide 7/ 13

How to check “Justification” of atoms?

I Similar to [KCM2024], for each cyclic atom x , we introduce a new “Copy” variable
x ′ s.t. x ′ tells whether x is justified or not

I if x = 0, then x ′ unit propagates to 0
I if x = 1 and justified, then x ′ unit propagates to 1

if x is unjustified, then x ′ does NOT propagate

I Example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

atom copy C1

a Copy(a) = a′ a′ −→ a
if x is 0 then x′ is 0b Copy(b) = b′ b′ −→ b

s,t - -

rule C2

r1 : a← b Copy(r1) : b′ −→ a′

r2 : b ← a Copy(r2) : a′ −→ b′

if x is 1 and Jus then x′ is 1r3 : a ∨ s ← > Copy(r3) : a′ ∨ s
r4 : s ← ∼ t -

Copy(P) = C1 ∧ C2

Slide 7/ 13

How to check “Justification”?

Let τ |= Comp(P)

I (Case 1) τ is an answer set, then all cyclic atoms of τ are justified.

I (Case 2) τ is NOT an answer set, then some cyclic atoms of τ are NOT justified.

Recall the example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

I Comp(P) = (a −→ (b ∨ ¬s)) ∧ (b −→ a) ∧ (s −→ (¬a ∨ ¬t)) ∧ (b −→
a) ∧ (a −→ b) ∧ (a ∨ s) ∧ (¬t −→ s) ∧ (¬t)

I Copy(P) = (a′ −→ a) ∧ (b′ −→ b) ∧ (a′ −→ b′) ∧ (b′ −→ a′) ∧ (a′ ∨ s)

τ Comp(P) Copy(P)|τ Remark

{s} ∈ AS(P) |= a′ 7→ 0, b′ 7→ 0 a, b are justified

{a, b, s}6∈AS(P) |= (a′ −→ b′) ∧ (b′ −→ a′) a′,b′ CAN be false

τ is a non-justified models of Comp(P):1

Some loop atoms of τ can be assigned false while still satisfying Copy(P) |τ

1F |τ denotes the unit propagation of τ on F

Slide 8/ 13

How to check “Justification”?

Let τ |= Comp(P)

I (Case 1) τ is an answer set, then all cyclic atoms of τ are justified.

I (Case 2) τ is NOT an answer set, then some cyclic atoms of τ are NOT justified.

Recall the example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

I Comp(P) = (a −→ (b ∨ ¬s)) ∧ (b −→ a) ∧ (s −→ (¬a ∨ ¬t)) ∧ (b −→
a) ∧ (a −→ b) ∧ (a ∨ s) ∧ (¬t −→ s) ∧ (¬t)

I Copy(P) = (a′ −→ a) ∧ (b′ −→ b) ∧ (a′ −→ b′) ∧ (b′ −→ a′) ∧ (a′ ∨ s)

τ Comp(P) Copy(P)|τ Remark

{s} ∈ AS(P) |= a′ 7→ 0, b′ 7→ 0 a, b are justified

{a, b, s}6∈AS(P) |= (a′ −→ b′) ∧ (b′ −→ a′) a′,b′ CAN be false

τ is a non-justified models of Comp(P):1

Some loop atoms of τ can be assigned false while still satisfying Copy(P) |τ

1F |τ denotes the unit propagation of τ on F

Slide 8/ 13

How to check “Justification”?

Let τ |= Comp(P)

I (Case 1) τ is an answer set, then all cyclic atoms of τ are justified.

I (Case 2) τ is NOT an answer set, then some cyclic atoms of τ are NOT justified.

Recall the example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

I Comp(P) = (a −→ (b ∨ ¬s)) ∧ (b −→ a) ∧ (s −→ (¬a ∨ ¬t)) ∧ (b −→
a) ∧ (a −→ b) ∧ (a ∨ s) ∧ (¬t −→ s) ∧ (¬t)

I Copy(P) = (a′ −→ a) ∧ (b′ −→ b) ∧ (a′ −→ b′) ∧ (b′ −→ a′) ∧ (a′ ∨ s)

τ Comp(P) Copy(P)|τ Remark

{s} ∈ AS(P) |= a′ 7→ 0, b′ 7→ 0 a, b are justified

{a, b, s}6∈AS(P) |= (a′ −→ b′) ∧ (b′ −→ a′) a′,b′ CAN be false

τ is a non-justified models of Comp(P):1

Some loop atoms of τ can be assigned false while still satisfying Copy(P) |τ

1F |τ denotes the unit propagation of τ on F

Slide 8/ 13

How to check “Justification”?

Let τ |= Comp(P)

I (Case 1) τ is an answer set, then all cyclic atoms of τ are justified.

I (Case 2) τ is NOT an answer set, then some cyclic atoms of τ are NOT justified.

Recall the example: P = {a←b.
r1

b←a.
r2

a∨s←>.
r3

s←∼ t.
r4

}.

I Comp(P) = (a −→ (b ∨ ¬s)) ∧ (b −→ a) ∧ (s −→ (¬a ∨ ¬t)) ∧ (b −→
a) ∧ (a −→ b) ∧ (a ∨ s) ∧ (¬t −→ s) ∧ (¬t)

I Copy(P) = (a′ −→ a) ∧ (b′ −→ b) ∧ (a′ −→ b′) ∧ (b′ −→ a′) ∧ (a′ ∨ s)

τ Comp(P) Copy(P)|τ Remark

{s} ∈ AS(P) |= a′ 7→ 0, b′ 7→ 0 a, b are justified

{a, b, s}6∈AS(P) |= (a′ −→ b′) ∧ (b′ −→ a′) a′,b′ CAN be false

τ is a non-justified models of Comp(P):1

Some loop atoms of τ can be assigned false while still satisfying Copy(P) |τ

1F |τ denotes the unit propagation of τ on F

Slide 8/ 13

Compute φ1, φ2, and X

Compute
#φ1

P

Overcount

Compute
#∃Xφ2

P

Surplus

#φ1−#∃Xφ2

Subtraction (# AS(P))

I Overcount: φ1 = Comp(P)

I Surplus:
φ2 = Comp(P)∧ Copy(P)′∧ Copy(P)? ∧

∧
x∈LA(P)(x ′ ≤ x?)∧

∨
x∈LA(P)(x ′ < x?),

and X =
⋃

x∈LA(P){x ′, x?}
I LA(P) denotes loop atoms of P
I Copy(P)′ and Copy(P)? are two sets of Copy(P)
I

∧
x∈LA(P)(x ′ ≤ x?)∧

∨
x∈LA(P)(x ′ < x?) enforces that at least one of the

loop atoms can be set to false while satisfying Comp(P) and Copy(P)

Slide 9/ 13

Compute φ1, φ2, and X

Compute
#φ1

P

Overcount

Compute
#∃Xφ2

P

Surplus

#φ1−#∃Xφ2

Subtraction (# AS(P))

I Overcount: φ1 = Comp(P)

I Surplus:
φ2 = Comp(P)∧ Copy(P)′∧ Copy(P)? ∧

∧
x∈LA(P)(x ′ ≤ x?)∧

∨
x∈LA(P)(x ′ < x?),

and X =
⋃

x∈LA(P){x ′, x?}
I LA(P) denotes loop atoms of P
I Copy(P)′ and Copy(P)? are two sets of Copy(P)
I

∧
x∈LA(P)(x ′ ≤ x?)∧

∨
x∈LA(P)(x ′ < x?) enforces that at least one of the

loop atoms can be set to false while satisfying Comp(P) and Copy(P)

Slide 9/ 13

Compute φ1, φ2, and X

Compute
#φ1

P

Overcount

Compute
#∃Xφ2

P

Surplus

#φ1−#∃Xφ2

Subtraction (# AS(P))

I Overcount: φ1 = Comp(P)

I Surplus:
φ2 = Comp(P)∧ Copy(P)′∧ Copy(P)? ∧

∧
x∈LA(P)(x ′ ≤ x?)∧

∨
x∈LA(P)(x ′ < x?),

and X =
⋃

x∈LA(P){x ′, x?}
I LA(P) denotes loop atoms of P
I Copy(P)′ and Copy(P)? are two sets of Copy(P)
I

∧
x∈LA(P)(x ′ ≤ x?)∧

∨
x∈LA(P)(x ′ < x?) enforces that at least one of the

loop atoms can be set to false while satisfying Comp(P) and Copy(P)

Slide 9/ 13

Experimental Evaluation

Benchmark sources:

1. QBF [KES+2022] 2. strategic companies [L2005]

3. abstract argumentation [GMR+2015] 4. PC configuration [FGR2022]

5. minimal diagnosis [GST+2008] 6. system biology [TBP+2024]

7. random instance generator [ART2017] -

Baselines:

1. Clingo [GKS2012] 2. Wasp [ADL+2015] 3. DynASP [FHM+2017]

Experimental setup:
A single core, with a time limit of 5000 seconds, a memory limit of 8 GB

Slide 10/ 13

Experimental Evaluation

Benchmark sources:

1. QBF [KES+2022] 2. strategic companies [L2005]

3. abstract argumentation [GMR+2015] 4. PC configuration [FGR2022]

5. minimal diagnosis [GST+2008] 6. system biology [TBP+2024]

7. random instance generator [ART2017] -

Baselines:

1. Clingo [GKS2012] 2. Wasp [ADL+2015] 3. DynASP [FHM+2017]

Experimental setup:
A single core, with a time limit of 5000 seconds, a memory limit of 8 GB

Slide 10/ 13

Experimental Evaluation

Benchmark sources:

1. QBF [KES+2022] 2. strategic companies [L2005]

3. abstract argumentation [GMR+2015] 4. PC configuration [FGR2022]

5. minimal diagnosis [GST+2008] 6. system biology [TBP+2024]

7. random instance generator [ART2017] -

Baselines:

1. Clingo [GKS2012] 2. Wasp [ADL+2015] 3. DynASP [FHM+2017]

Experimental setup:
A single core, with a time limit of 5000 seconds, a memory limit of 8 GB

Slide 10/ 13

Experimental Results

PAR-2: Penalized average runtime that
assigns 2× for each unsolved instances

clingo DynASP Wasp SharpASP-SR

#Solved (1125) 708 89 432 825

PAR2 4118 9212 6204 2939

clingo (≤ 104) +
clingo DynASP Wasp SharpASP-SR

#Solved (1125) 708 377 442 918

PAR2 4118 4790 4404 1600

Slide 11/ 13

Experimental Results

PAR-2: Penalized average runtime that
assigns 2× for each unsolved instances

clingo DynASP Wasp SharpASP-SR

#Solved (1125) 708 89 432 825

PAR2 4118 9212 6204 2939

clingo (≤ 104) +
clingo DynASP Wasp SharpASP-SR

#Solved (1125) 708 377 442 918

PAR2 4118 4790 4404 1600

Slide 11/ 13

Strengths and Weaknesses

� Strengths: SharpASP-SR counts instances with large number of answer sets

0 100 200 300 400 500 600 700 800 900
instances

0

20

40

60

80

100

120

co
un

t

SharpASP-SR
Clingo
Wasp
DynASP

� Weaknesses: SharpASP-SR struggles with instances having a large |LA(P)|

|LA(P)|
∑

clingo DynASP Wasp SharpASP-SR

[1, 100] 399 248 87 165 386

[101, 1000] 519 316 2 142 398

> 1000 207 144 0 125 41

Slide 12/ 13

Strengths and Weaknesses

� Strengths: SharpASP-SR counts instances with large number of answer sets

0 100 200 300 400 500 600 700 800 900
instances

0

20

40

60

80

100

120

co
un

t

SharpASP-SR
Clingo
Wasp
DynASP

� Weaknesses: SharpASP-SR struggles with instances having a large |LA(P)|

|LA(P)|
∑

clingo DynASP Wasp SharpASP-SR

[1, 100] 399 248 87 165 386

[101, 1000] 519 316 2 142 398

> 1000 207 144 0 125 41

Slide 12/ 13

Conclusion

I We propose SharpASP-SR, a subtractive reduction based approach for answer set
counting for disjunctive logic programs

I We reduce answer set counting to projected model counting by exploiting an
alternative characterization of non-justified models

I Empirically SharpASP-SR outperforms existing counters on instances with large
answer set counts

https://github.com/meelgroup/SharpASP-SR

Slide 13/ 13

https://github.com/meelgroup/SharpASP-SR

Conclusion

I We propose SharpASP-SR, a subtractive reduction based approach for answer set
counting for disjunctive logic programs

I We reduce answer set counting to projected model counting by exploiting an
alternative characterization of non-justified models

I Empirically SharpASP-SR outperforms existing counters on instances with large
answer set counts

https://github.com/meelgroup/SharpASP-SR

Slide 13/ 13

https://github.com/meelgroup/SharpASP-SR

