
ExactASPCountingwithCompactEncodings
Mohimenul Kabir1, Supratik Chakraborty2, Kuldeep S Meel3

1National University of Singapore, 2Indian Institute of Technology, Bombay, 3University of Toronto

PROBLEM STATEMENT
Answer Set Programming (ASP)
A rule-based language for problem encoding

h← b1, . . . , bk,∼ bk+1, . . . ,∼ bk+m

Answer Set Counting (#ASP)
Given a normal program P , counts the number of answer sets of P ,
which is denoted as CntAS(P) and AS(P) denotes answer sets of P
Applications: Wide range of applications in probabilistic inference, net-
work reliability, planning, navigation, etc.
Existing Techniques for #ASP include (i) enumeration (ii) dynamic pro-
gramming on tree representation (iii) CNFization+#CNF
Main Contribution: A tool for #ASP, named sharpASP

Unit Propagation
• Simplifies a Boolean formula via (i) removing falsified literals (ii) remov-

ing satisfied clauses and (iii) performing inference
• If M |= F , then F |M = ∅ (denotes the unit propagation of F ∧M)

Recall #ASP via #SAT

ASP P CNF F

• Clark Completion Comp(P) preserves the answer sets of P but the
converse is not true for cyclic programs
cyclic ⇒ exists some cyclic relations between program atoms

• Existing encodings to preserve one-to-one correspondence include

– Loop formula + Comp(P)
– Unfolding + Comp(P)
– Level Ranking + Comp(P)

• One-to-one encodings hurt the scalability of counting algorithms

METHODOLOGY

Key Observation
• Answer Set Definition: “Each atom of an answer set must be justified.”
• Under Clark’s completion, all non-cyclic atoms are justified.
• Key Insight: “It suffices to justify cyclic atoms only ”.

Checking Justification
“copy atom”: introduce a new atom v⋆ for each cyclic atom v
Purpose of “Copy atom” v⋆: Checking justification of atom v
Construct a Boolean formula Copy(P) as follows:

• for each cyclic atom v, add a clause

¬v⋆ ∨ v

• for each rule v ← a1, . . . ak, b1, . . . bm,∼ c1, . . . ∼ cn ∈ P , where
v, ai are cyclic atoms and none of bi is a cyclic atom, add a clause

¬a⋆1 ∨ . . .¬a⋆k ∨ ¬b1 ∨ . . .¬bm ∨ c1 ∨ . . . cn ∨ v⋆

High-level Idea: If v is 1 and justified, then v⋆ unit propagates to 1

Alternative Answer Set Definition

M ∈ AS(P) if and only if M |= Comp(P) and Copy(P)|M = ∅

Counting Answer Sets
Notation: P = (Comp(P)

F

,Copy(P)
G

)

CntAS(F,G) = CntAS(F |¬x, G|¬x) + CntAS(F |x, G|x),
for non-copy variable x

CntAS(⊥, G) = 0

CntAS(∅, G) =

{
1 if G = ∅
0 otherwise

An Example
Consider program P = {r1 ≡ a← b. r2 ≡ b← a. r3 ≡ s←∼ a.}.
Comp(P) = {(a↔ b) ∧ (b↔ a) ∧ (s↔ ¬a)}
Copy(P) = {¬a⋆ ∨ a,¬b⋆ ∨ b,¬a⋆ ∨ b⋆,¬b⋆ ∨ a⋆}.

• For answer set M = {s}, M |= Comp(P) and Copy(P)|M = ∅
• For non-answer set M = {a, b}, M |= Comp(P) but
Copy(P)|M = {¬a⋆ ∨ b⋆,¬b⋆ ∨ a⋆} ̸= ∅, since none of a⋆ and
b⋆ unit propagates in Copy(P)

EMPIRICAL EVALUATION

clingo ASProb
aspmc
+STD

lp2sat
+STD

sharpASP
(STD)

Hamil. (405) 230 0 167 112 300
Reach. (600) 318 149 421 471 463
aspben (465) 321 39 252 193 260

Total (1470) 869 188 840 776 1023
PAR-2 4285 8722 4572 5084 3373

The performance of sharpASP vis-a-vis other ASP counters in terms of
the number of instances counted within a time limit of 5000 seconds and
a memory limit of 8GB, and the last row shows the PAR-2 scores.

The runtime performance of sharpASP vis-a-vis other ASP counters

ABLATION STUDY

BCP time (seconds) #Decisions (10-base log)
Group 1: sharpASP outperforms and Group 2: does not outperform

sharpASP spends less time in BCP but makes more decisions.

Concluding Remarks
• We propose an ASP counter that counts answer sets using an alterna-

tive answer set definition, avoiding the one-to-one corresponding en-
coding, leveraging a #SAT-like technique.

Source Code

https://github.com/meelgroup/sharpASP

