
On Lower Bounding Minimal Model Count

Mohimenul Kabira and Kuldeep S Meelb

aNational University of Singapore
bUniversity of Toronto

Slide 1/ 15

Minimal Models

▶ Propositional variable: v takes value either 0 or 1

▶ Literal: ℓ is either v or ¬v
▶ Clause: C is a disjunction of literals

∨
i ℓi

▶ Formula: F is a conjunction of clauses
∧

j Cj

▶ Assignment: τ assigns each variables τ : Var(F)→ {0, 1}
where Var(F) denotes the variable set of F

▶ Model: τ |= F when τ evaluates F to be 1

▶ Set Notation: {a→ 1, b → 0, c → 1} ≡ {a, c}
▶ Minimal Model: τ is a subset minimal model of F if ̸∃ τ2 |= F such that τ2 < τ .

Intuitively, the minimal set of variables assigned to 1 to satisfy the formula F

▶ Consider F = (a ∨ b) ∧ (a ∨ c). The formula F has five models.
The minimal models of F : {a}, {b, c}.
Note that the models {a, b}, {a, c}, {a, b, c} are NOT minimal

▶ Applications: Diagnosis [Reiter1987], Database System [Zaki2004], etc.

▶ Property: Each of the variables within a minimal model must be justified.
For formula F = (a ∨ b) ∧ (a ∨ c),

▶ τ = {a}, if a is flipped to false, then it falsifies both of the clauses

▶ Goal: Lower bounding the number of minimal models of F
(i.e., lower bounding |MM(F)|)

Slide 2/ 15

Minimal Models

▶ Propositional variable: v takes value either 0 or 1

▶ Literal: ℓ is either v or ¬v
▶ Clause: C is a disjunction of literals

∨
i ℓi

▶ Formula: F is a conjunction of clauses
∧

j Cj

▶ Assignment: τ assigns each variables τ : Var(F)→ {0, 1}
where Var(F) denotes the variable set of F

▶ Model: τ |= F when τ evaluates F to be 1

▶ Set Notation: {a→ 1, b → 0, c → 1} ≡ {a, c}
▶ Minimal Model: τ is a subset minimal model of F if ̸∃ τ2 |= F such that τ2 < τ .

Intuitively, the minimal set of variables assigned to 1 to satisfy the formula F

▶ Consider F = (a ∨ b) ∧ (a ∨ c). The formula F has five models.
The minimal models of F : {a}, {b, c}.
Note that the models {a, b}, {a, c}, {a, b, c} are NOT minimal

▶ Applications: Diagnosis [Reiter1987], Database System [Zaki2004], etc.

▶ Property: Each of the variables within a minimal model must be justified.
For formula F = (a ∨ b) ∧ (a ∨ c),

▶ τ = {a}, if a is flipped to false, then it falsifies both of the clauses

▶ Goal: Lower bounding the number of minimal models of F
(i.e., lower bounding |MM(F)|)

Slide 2/ 15

Minimal Models

▶ Propositional variable: v takes value either 0 or 1

▶ Literal: ℓ is either v or ¬v
▶ Clause: C is a disjunction of literals

∨
i ℓi

▶ Formula: F is a conjunction of clauses
∧

j Cj

▶ Assignment: τ assigns each variables τ : Var(F)→ {0, 1}
where Var(F) denotes the variable set of F

▶ Model: τ |= F when τ evaluates F to be 1

▶ Set Notation: {a→ 1, b → 0, c → 1} ≡ {a, c}
▶ Minimal Model: τ is a subset minimal model of F if ̸∃ τ2 |= F such that τ2 < τ .

Intuitively, the minimal set of variables assigned to 1 to satisfy the formula F

▶ Consider F = (a ∨ b) ∧ (a ∨ c). The formula F has five models.
The minimal models of F : {a}, {b, c}.
Note that the models {a, b}, {a, c}, {a, b, c} are NOT minimal

▶ Applications: Diagnosis [Reiter1987], Database System [Zaki2004], etc.

▶ Property: Each of the variables within a minimal model must be justified.
For formula F = (a ∨ b) ∧ (a ∨ c),

▶ τ = {a}, if a is flipped to false, then it falsifies both of the clauses

▶ Goal: Lower bounding the number of minimal models of F
(i.e., lower bounding |MM(F)|)

Slide 2/ 15

Answer Set Programming

▶ Roots in logic programming and nonmonotonic reasoning

▶ A rule-based language for problem encoding

h1∨ ...∨hℓ
head

← b1, ... ,bk ,∼ bk+1, ... ,∼ bk+m.
body

▶ An ASP program P ≡ set of rules.

▶ The model of P is an answer set (denoted as AS(P)).

▶ Answer set programming follows the default negation — everything is false unless
there are some justifications.

▶ Consider an ASP program, P = {a←b.
r1

b←a.
r2

s←∼a.
r3

a←t.
r4

}

▶ {s} ∈ AS(P), since s is justified by r3
▶ {a, b} ̸∈ AS(P), since a and b are not justified

Slide 3/ 15

Answer Set Programming

▶ Roots in logic programming and nonmonotonic reasoning

▶ A rule-based language for problem encoding

h1∨ ...∨hℓ
head

← b1, ... ,bk ,∼ bk+1, ... ,∼ bk+m.
body

▶ An ASP program P ≡ set of rules.

▶ The model of P is an answer set (denoted as AS(P)).

▶ Answer set programming follows the default negation — everything is false unless
there are some justifications.

▶ Consider an ASP program, P = {a←b.
r1

b←a.
r2

s←∼a.
r3

a←t.
r4

}

▶ {s} ∈ AS(P), since s is justified by r3
▶ {a, b} ̸∈ AS(P), since a and b are not justified

Slide 3/ 15

Answer Set Programming

▶ Roots in logic programming and nonmonotonic reasoning

▶ A rule-based language for problem encoding

h1∨ ...∨hℓ
head

← b1, ... ,bk ,∼ bk+1, ... ,∼ bk+m.
body

▶ An ASP program P ≡ set of rules.

▶ The model of P is an answer set (denoted as AS(P)).

▶ Answer set programming follows the default negation — everything is false unless
there are some justifications.

▶ Consider an ASP program, P = {a←b.
r1

b←a.
r2

s←∼a.
r3

a←t.
r4

}

▶ {s} ∈ AS(P), since s is justified by r3
▶ {a, b} ̸∈ AS(P), since a and b are not justified

Slide 3/ 15

From Minimal Models to Answer Set Programming

▶ We can compute minimal models of a formula by answer set solving

▶ For a Boolean formula F , we can compute an ASP program DLP(F) such that
AS(DLP(F)) = MM(F)

DLP(F):

▶ for each clause C = ℓ1 ∨ . . . ∨ ℓk ∨ ¬ℓk+1 ∨ . . . ∨ ¬ℓk+m ∈ F ,
we introduce a rule to DLP(F) as follows:

ℓ1 ∨ . . . ℓk ← ℓk+1, . . . , ℓk+m.

Example:

▶ Consider F = (a ∨ b) ∧ (a ∨ c)

▶ DLP(F) = {a ∨ b ← . a ∨ c ← .}
▶ AS(DLP(F)) = {{a}, {b, c}}

Slide 4/ 15

From Minimal Models to Answer Set Programming

▶ We can compute minimal models of a formula by answer set solving

▶ For a Boolean formula F , we can compute an ASP program DLP(F) such that
AS(DLP(F)) = MM(F)

DLP(F):

▶ for each clause C = ℓ1 ∨ . . . ∨ ℓk ∨ ¬ℓk+1 ∨ . . . ∨ ¬ℓk+m ∈ F ,
we introduce a rule to DLP(F) as follows:

ℓ1 ∨ . . . ℓk ← ℓk+1, . . . , ℓk+m.

Example:

▶ Consider F = (a ∨ b) ∧ (a ∨ c)

▶ DLP(F) = {a ∨ b ← . a ∨ c ← .}
▶ AS(DLP(F)) = {{a}, {b, c}}

Slide 4/ 15

From Minimal Models to Answer Set Programming

▶ We can compute minimal models of a formula by answer set solving

▶ For a Boolean formula F , we can compute an ASP program DLP(F) such that
AS(DLP(F)) = MM(F)

DLP(F):

▶ for each clause C = ℓ1 ∨ . . . ∨ ℓk ∨ ¬ℓk+1 ∨ . . . ∨ ¬ℓk+m ∈ F ,
we introduce a rule to DLP(F) as follows:

ℓ1 ∨ . . . ℓk ← ℓk+1, . . . , ℓk+m.

Example:

▶ Consider F = (a ∨ b) ∧ (a ∨ c)

▶ DLP(F) = {a ∨ b ← . a ∨ c ← .}
▶ AS(DLP(F)) = {{a}, {b, c}}

Slide 4/ 15

Knowledge Compilation

▶ Knowledge compilation [Thurley2006] is an ingredient for model counters (model
counting is polytime over the knowledge compilation)

▶ Shannon Expansion

∨

∧

x F{x}

∧

¬x F{¬x}

Unit Propagation: For x ∈ Var(F), τ |= F|{x} if and only if {x} ∪ τ |= F

▶ Component Decomposition: For two formulas F1 and F2 where
Var(F1) ∩ Var(F2) = ∅, it holds that τ1 |= F1 and τ2 |= F2 if and only if
τ1 ∪ τ2 |= F1 ∧ F2

∧

F1 F2

Slide 5/ 15

Knowledge Compilation

▶ Knowledge compilation [Thurley2006] is an ingredient for model counters (model
counting is polytime over the knowledge compilation)

▶ Shannon Expansion

∨

∧

x F{x}

∧

¬x F{¬x}

Unit Propagation: For x ∈ Var(F), τ |= F|{x} if and only if {x} ∪ τ |= F

▶ Component Decomposition: For two formulas F1 and F2 where
Var(F1) ∩ Var(F2) = ∅, it holds that τ1 |= F1 and τ2 |= F2 if and only if
τ1 ∪ τ2 |= F1 ∧ F2

∧

F1 F2

Slide 5/ 15

Knowledge Compilation

▶ Knowledge compilation [Thurley2006] is an ingredient for model counters (model
counting is polytime over the knowledge compilation)

▶ Shannon Expansion

∨

∧

x F{x}

∧

¬x F{¬x}

Unit Propagation: For x ∈ Var(F), τ |= F|{x} if and only if {x} ∪ τ |= F

▶ Component Decomposition: For two formulas F1 and F2 where
Var(F1) ∩ Var(F2) = ∅, it holds that τ1 |= F1 and τ2 |= F2 if and only if
τ1 ∪ τ2 |= F1 ∧ F2

∧

F1 F2

Slide 5/ 15

Challenges in Knowledge Compilation: Minimal Model Counting

Consider the Boolean formula F = (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ d) ∧ (¬a ∨ ¬b ∨ e)

▶ MM(F) = {{a}, {b}, {c}}
▶ MM(F|{e}) = {{a}, {b}, {c}}. But {b} ∪ {e} ̸∈ MM(F)

Unit propagation on minimal model counting DOES NOT work

▶ MM(F) = {{a}, {b}, {c}}
▶ F|{a,b} decomposes into two components containing variables d and e.

▶ F|{a,b} = d ∧ e

▶ MM(d) = {d} and MM(e) = {e}
▶ However, {a, b} ∪ {d} ∪ {e} ̸∈ MM(F)

Simple Component Decomposition on minimal model counting DOES NOT work

Reason: The assignment to variables is NOT justified.
In minimal model counting, unit propagation and component decomposition must be
applied on justified assignment

Slide 6/ 15

Challenges in Knowledge Compilation: Minimal Model Counting

Consider the Boolean formula F = (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ d) ∧ (¬a ∨ ¬b ∨ e)

▶ MM(F) = {{a}, {b}, {c}}
▶ MM(F|{e}) = {{a}, {b}, {c}}. But {b} ∪ {e} ̸∈ MM(F)

Unit propagation on minimal model counting DOES NOT work

▶ MM(F) = {{a}, {b}, {c}}
▶ F|{a,b} decomposes into two components containing variables d and e.

▶ F|{a,b} = d ∧ e

▶ MM(d) = {d} and MM(e) = {e}
▶ However, {a, b} ∪ {d} ∪ {e} ̸∈ MM(F)

Simple Component Decomposition on minimal model counting DOES NOT work

Reason: The assignment to variables is NOT justified.
In minimal model counting, unit propagation and component decomposition must be
applied on justified assignment

Slide 6/ 15

Challenges in Knowledge Compilation: Minimal Model Counting

Consider the Boolean formula F = (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ d) ∧ (¬a ∨ ¬b ∨ e)

▶ MM(F) = {{a}, {b}, {c}}
▶ MM(F|{e}) = {{a}, {b}, {c}}. But {b} ∪ {e} ̸∈ MM(F)

Unit propagation on minimal model counting DOES NOT work

▶ MM(F) = {{a}, {b}, {c}}
▶ F|{a,b} decomposes into two components containing variables d and e.

▶ F|{a,b} = d ∧ e

▶ MM(d) = {d} and MM(e) = {e}
▶ However, {a, b} ∪ {d} ∪ {e} ̸∈ MM(F)

Simple Component Decomposition on minimal model counting DOES NOT work

Reason: The assignment to variables is NOT justified.
In minimal model counting, unit propagation and component decomposition must be
applied on justified assignment

Slide 6/ 15

Knowledge Compilation over Justified Assignment

▶ Justified Assignment: Given an assignment τ , the justified assignment
τ⋆ = τ↓{v∈Var(F)|τ(v)=0}, where “↓” denotes the projection

▶ Cut: C ⊂ Var(F) such that for every τ ∈ 2C , the formula F|τ efficiently
decomposes into disjoint components (heuristically)

∨

∧

τ1 F{τ⋆
1 }

... ∧

τk F{τ⋆
k
}

For each i ∈ [1, k]

▶ τi ∈ 2C and τ1 ∨ . . . τk = ⊤
▶ ✓ Unit propagation and Component decomposition on F{τ⋆

i } preserve the

minimal models

Slide 7/ 15

Knowledge Compilation over Justified Assignment

▶ Justified Assignment: Given an assignment τ , the justified assignment
τ⋆ = τ↓{v∈Var(F)|τ(v)=0}, where “↓” denotes the projection

▶ Cut: C ⊂ Var(F) such that for every τ ∈ 2C , the formula F|τ efficiently
decomposes into disjoint components (heuristically)

∨

∧

τ1 F{τ⋆
1 }

... ∧

τk F{τ⋆
k
}

For each i ∈ [1, k]

▶ τi ∈ 2C and τ1 ∨ . . . τk = ⊤
▶ ✓ Unit propagation and Component decomposition on F{τ⋆

i } preserve the

minimal models

Slide 7/ 15

Knowledge Compilation over Justified Assignment

▶ Justified Assignment: Given an assignment τ , the justified assignment
τ⋆ = τ↓{v∈Var(F)|τ(v)=0}, where “↓” denotes the projection

▶ Cut: C ⊂ Var(F) such that for every τ ∈ 2C , the formula F|τ efficiently
decomposes into disjoint components (heuristically)

∨

∧

τ1 F{τ⋆
1 }

... ∧

τk F{τ⋆
k
}

For each i ∈ [1, k]

▶ τi ∈ 2C and τ1 ∨ . . . τk = ⊤
▶ ✓ Unit propagation and Component decomposition on F{τ⋆

i } preserve the

minimal models

Slide 7/ 15

Knowledge Compilation: Details

Data: Formula F and cut C
Result: |MM(F)|
Algorithm Proj-Enum(F , C)

cnt← 0
B ← ∅ // blocking assignments
while ∃σ ∈ MinModelswithBlocking(F ,B) do

τ ← σ↓C , d ← 1
foreach comp ∈ Components(F |τ⋆) do

// each disjoint components
d ← d × |ProjMinModels(F , τ,Var(comp))| // projected enumeration

end
cnt← cnt + d // increment the number of models
B.add(τ)

end
return cnt

Implementation Details:

▶ MinModelswithBlocking(F ,B): Finding a minimal model of F , where B denotes
all blocking assignments

▶ ProjMinModels(F , τ,Y): Enumerate σ ∈ MM(F) such that σ |= τ while
projecting onto the variable set of Y

▶ C: employing tree decomposition

Slide 8/ 15

Knowledge Compilation: Details

Data: Formula F and cut C
Result: |MM(F)|
Algorithm Proj-Enum(F , C)

cnt← 0
B ← ∅ // blocking assignments
while ∃σ ∈ MinModelswithBlocking(F ,B) do

τ ← σ↓C , d ← 1
foreach comp ∈ Components(F |τ⋆) do

// each disjoint components
d ← d × |ProjMinModels(F , τ,Var(comp))| // projected enumeration

end
cnt← cnt + d // increment the number of models
B.add(τ)

end
return cnt

Implementation Details:

▶ MinModelswithBlocking(F ,B): Finding a minimal model of F , where B denotes
all blocking assignments

▶ ProjMinModels(F , τ,Y): Enumerate σ ∈ MM(F) such that σ |= τ while
projecting onto the variable set of Y

▶ C: employing tree decomposition

Slide 8/ 15

Hashing-based Approximate Minimal Model Counting

Approximate Minimal Model Counting [CMV2013]

▶ (ϵ, δ)-approximate counting:
Input: formula F , tolerance ϵ, and confidence δ
Output: a count c such that

Pr[|MM(F)|/(1 + ϵ) ≤ c ≤ |MM(F)|×(1 + ϵ)] ≥ 1− δ

▶ Counter: invoke ApproxASP [KESHFM2022] on DLP(F)

Probabilistic Lower Bound on Minimal Models

▶ Input: formula F and confidence δ
Output: a count c such that

Pr[c ≤ |MM(F)|] ≥ 1− δ

▶ Counter: invoke a modified ApproxASP on DLP(F)

Slide 9/ 15

Hashing-based Approximate Minimal Model Counting

Approximate Minimal Model Counting [CMV2013]

▶ (ϵ, δ)-approximate counting:
Input: formula F , tolerance ϵ, and confidence δ
Output: a count c such that

Pr[|MM(F)|/(1 + ϵ) ≤ c ≤ |MM(F)|×(1 + ϵ)] ≥ 1− δ

▶ Counter: invoke ApproxASP [KESHFM2022] on DLP(F)

Probabilistic Lower Bound on Minimal Models

▶ Input: formula F and confidence δ
Output: a count c such that

Pr[c ≤ |MM(F)|] ≥ 1− δ

▶ Counter: invoke a modified ApproxASP on DLP(F)

Slide 9/ 15

Hashing-based Minimal Model Counting

Data: Formula F , independent support X , and confidence δ
Result: |MM(F)|
Algorithm HashCount(F ,X , δ)

α← − log2 (δ) + 1
generate |X |−1 XORs, namely Q1, . . . ,Q|X|−1

m̂← max k s.t. ∃τ ∈ MM(F) s.t. τ |= Q1 ∧ . . .Qk

return 2m̂−α

Implementation Details:

▶ HashCount is similar to ApproxASP with thresh = 1

▶ HashCount utilizes a log search technique to find the value of m̂

▶ Compute independent support following the Padoa’s theorem [Padoa1901]

Combining Both Algorithms: MinLB

▶ If |Cut(F)| is small, then invoke Proj-Enum

▶ Otherwise, invoke HashCount

Slide 10/ 15

Hashing-based Minimal Model Counting

Data: Formula F , independent support X , and confidence δ
Result: |MM(F)|
Algorithm HashCount(F ,X , δ)

α← − log2 (δ) + 1
generate |X |−1 XORs, namely Q1, . . . ,Q|X|−1

m̂← max k s.t. ∃τ ∈ MM(F) s.t. τ |= Q1 ∧ . . .Qk

return 2m̂−α

Implementation Details:

▶ HashCount is similar to ApproxASP with thresh = 1

▶ HashCount utilizes a log search technique to find the value of m̂

▶ Compute independent support following the Padoa’s theorem [Padoa1901]

Combining Both Algorithms: MinLB

▶ If |Cut(F)| is small, then invoke Proj-Enum

▶ Otherwise, invoke HashCount

Slide 10/ 15

Hashing-based Minimal Model Counting

Data: Formula F , independent support X , and confidence δ
Result: |MM(F)|
Algorithm HashCount(F ,X , δ)

α← − log2 (δ) + 1
generate |X |−1 XORs, namely Q1, . . . ,Q|X|−1

m̂← max k s.t. ∃τ ∈ MM(F) s.t. τ |= Q1 ∧ . . .Qk

return 2m̂−α

Implementation Details:

▶ HashCount is similar to ApproxASP with thresh = 1

▶ HashCount utilizes a log search technique to find the value of m̂

▶ Compute independent support following the Padoa’s theorem [Padoa1901]

Combining Both Algorithms: MinLB

▶ If |Cut(F)| is small, then invoke Proj-Enum

▶ Otherwise, invoke HashCount

Slide 10/ 15

Experimental Result

Baselines:

▶ Clingo

▶ ApproxASP

▶ #MinModels: subtractive approach:
the number of all models (#P) − the number of non-minimal models (#NP)

Benchmarks:

▶ Model Counting Competition Benchmarks

▶ Minimal Generators Benchmark1

Evaluation Metric

TQP(t,C) =

{
2× T , if no lower bound is returned

t + T × 1+log (Cmin+1)
1+log (C+1)

, otherwise

1https://dtai.cs.kuleuven.be/CP4IM/datasets/

Slide 11/ 15

https://dtai.cs.kuleuven.be/CP4IM/datasets/

Experimental Result

Baselines:

▶ Clingo

▶ ApproxASP

▶ #MinModels: subtractive approach:
the number of all models (#P) − the number of non-minimal models (#NP)

Benchmarks:

▶ Model Counting Competition Benchmarks

▶ Minimal Generators Benchmark1

Evaluation Metric

TQP(t,C) =

{
2× T , if no lower bound is returned

t + T × 1+log (Cmin+1)
1+log (C+1)

, otherwise

1https://dtai.cs.kuleuven.be/CP4IM/datasets/

Slide 11/ 15

https://dtai.cs.kuleuven.be/CP4IM/datasets/

Experimental Result

Baselines:

▶ Clingo

▶ ApproxASP

▶ #MinModels: subtractive approach:
the number of all models (#P) − the number of non-minimal models (#NP)

Benchmarks:

▶ Model Counting Competition Benchmarks

▶ Minimal Generators Benchmark1

Evaluation Metric

TQP(t,C) =

{
2× T , if no lower bound is returned

t + T × 1+log (Cmin+1)
1+log (C+1)

, otherwise

1https://dtai.cs.kuleuven.be/CP4IM/datasets/

Slide 11/ 15

https://dtai.cs.kuleuven.be/CP4IM/datasets/

Model Counting benchmark

Clingo ApproxASP #MinModels MinLB (our prototype)

6491 6379 7743 5599

Minimal Generator benchmark

Clingo ApproxASP #MinModels MinLB (our prototype)

6944 5713 9705 5043

Slide 12/ 15

Visualization of Lower Bounds

0 20 40 60 80 100 120
instances

0

100

200

300

400

500

lo
g

of
 m

od
el

s

Proj-Enum
ApproxASP
clingo
HashCount
#MinModels

Model counting competition

0 2 4 6 8 10 12 14 16
instances

10

20

30

40

50

lo
g

of
 m

od
el

s

Proj-Enum
ApproxASP
clingo
HashCount
#MinModels

Minimal generator benchmark

Slide 13/ 15

Strengths and Weaknesses

100 200 300 400 500 600
Cut size

2

4

6

8

10

12

14

r

Proj-Enum

250 500 750 1000 1250 1500 1750
Support size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

r
HashCount

The greater the value of r , the higher the quality.

Slide 14/ 15

Conclusion

We propose two methods for lower bounding minimal model count

▶ Proj-Enum outperforms when the cut size is small

▶ HashCount scales from small to medium independent support

▶ MinLB computes better lower bounds than existing systems.

https://github.com/meelgroup/minLB

Slide 15/ 15

https://github.com/meelgroup/minLB

