On Lower Bounding Minimal Model Count

Mohimenul Kabir? and Kuldeep S Meel®

?National University of Singapore
bUniversity of Toronto

Slide 1/ 15

Minimal Models

vV vYvYyVvyy

v

Propositional variable: v takes value either 0 or 1
Literal: £ is either v or —v

Clause: C is a disjunction of literals \/,; ¢;
Formula: F is a conjunction of clauses \; C;

Assignment: 7 assigns each variables 7 : Var(F) — {0,1}
where Var(F) denotes the variable set of F

Model: 7 = F when 7 evaluates F to be 1

Slide 2/ 15

Minimal Models

vV vYvYyVvyy

vy

Propositional variable: v takes value either 0 or 1
Literal: £ is either v or —v

Clause: C is a disjunction of literals \/,; ¢;
Formula: F is a conjunction of clauses \; C;

Assignment: 7 assigns each variables 7 : Var(F) — {0,1}
where Var(F) denotes the variable set of F

Model: 7 = F when 7 evaluates F to be 1
Set Notation: {a =+ 1,b— 0,c — 1} = {a,c}

Minimal Model: 7 is a subset minimal model of F if Z 7 = F such that 7 < 7.
Intuitively, the minimal set of variables assigned to 1 to satisfy the formula F

Consider F = (aV b) A (aV c). The formula F has five models.
The minimal models of F: {a}, {b,c}.
Note that the models {a, b}, {a, c}, {a, b, c} are NOT minimal

Applications: Diagnosis [Reiter1987], Database System [Zaki2004], etc.

Slide 2/ 15

Minimal Models

vV vYvYyVvyy

vy

Propositional variable: v takes value either 0 or 1
Literal: £ is either v or —v

Clause: C is a disjunction of literals \/,; ¢;
Formula: F is a conjunction of clauses \; C;

Assignment: 7 assigns each variables 7 : Var(F) — {0,1}
where Var(F) denotes the variable set of F

Model: 7 = F when 7 evaluates F to be 1
Set Notation: {a =+ 1,b— 0,c — 1} = {a,c}

Minimal Model: 7 is a subset minimal model of F if Z 7 = F such that 7 < 7.
Intuitively, the minimal set of variables assigned to 1 to satisfy the formula F

Consider F = (aV b) A (aV c). The formula F has five models.
The minimal models of F: {a}, {b,c}.
Note that the models {a, b}, {a, c}, {a, b, c} are NOT minimal

Applications: Diagnosis [Reiter1987], Database System [Zaki2004], etc.

Property: Each of the variables within a minimal model must be justified.
For formula F = (aV b) A (aV ¢),

» 7 = {a}, if ais flipped to false, then it falsifies both of the clauses

Goal: Lower bounding the number of minimal models of F
(i-e., lower bounding [MM(F)|)

Slide 2/ 15

Answer Set Programming

» Roots in logic programming and nonmonotonic reasoning

P> A rule-based language for problem encoding

h1V ...Vhy < by,bx,~byy1,...,~byim.

head body

Slide 3/ 15

Answer Set Programming

» Roots in logic programming and nonmonotonic reasoning

P> A rule-based language for problem encoding

mV...Vhy < by, ... ,b,~ bry1, o s~ brym-
head body

» An ASP program P = set of rules.
» The model of P is an answer set (denoted as AS(P)).

Slide 3/ 15

Answer Set Programming

v

Roots in logic programming and nonmonotonic reasoning

v

A rule-based language for problem encoding

mV...Vhy < by, ... ,b,~ bry1, o s~ brym-
head body

v

An ASP program P = set of rules.
The model of P is an answer set (denoted as AS(P)).

Answer set programming follows the default negation — everything is false unless
there are some justifications.

vy

> Consider an ASP program, P = {a<=b. b<—a. s<—~a. a«t.}
n r r3 ra
» {s} € AS(P), since s is justified by r3
> {a,b} & AS(P), since a and b are not justified

Slide 3/ 15

From Minimal Models to Answer Set Programming

> We can compute minimal models of a formula by answer set solving

> For a Boolean formula F, we can compute an ASP program DLP(F) such that
AS(DLP(F)) = MM(F)

Slide 4/ 15

From Minimal Models to Answer Set Programming

> We can compute minimal models of a formula by answer set solving

> For a Boolean formula F, we can compute an ASP program DLP(F) such that
AS(DLP(F)) = MM(F)
DLP(F):
> for eachclause C =01 V... V{4V b1 V...V by €F,
we introduce a rule to DLP(F) as follows:

OVl L1y Ly me

Slide 4/ 15

From Minimal Models to Answer Set Programming

> We can compute minimal models of a formula by answer set solving
> For a Boolean formula F, we can compute an ASP program DLP(F) such that
AS(DLP(F)) = MM(F)
DLP(F):
> for eachclause C =01 V... V{4V b1 V...V by €F,
we introduce a rule to DLP(F) as follows:

OVl L1y Ly me

Example:
> Consider F=(aV b)A(aVc)
> DLP(F)={aVb<+.aVc+ .}
> AS(DLP(F)) = {{a},{b, c}}

Slide 4/ 15

Knowledge Compilation

> Knowledge compilation [Thurley2006] is an ingredient for model counters (model
counting is polytime over the knowledge compilation)

Slide 5/ 15

Knowledge Compilation

> Knowledge compilation [Thurley2006] is an ingredient for model counters (model
counting is polytime over the knowledge compilation)

» Shannon Expansion

AN

o o
® (Fu)

Unit Propagation: For x € Var(F), 7 = Fify if and only if {x} U7 = F

Slide 5/ 15

Knowledge Compilation

> Knowledge compilation [Thurley2006] is an ingredient for model counters (model
counting is polytime over the knowledge compilation)

» Shannon Expansion

7
It

Unit Propagation: For x € Var(F), 7 = Fify if and only if {x} U7 = F
» Component Decomposition: For two formulas F; and F» where
Var(F1) N Var(F2) = 0, it holds that 71 |= F1 and 72 = F; if and only if

T]_UT2)=F1/\F2

Slide 5/ 15

Challenges in Knowledge Compilation: Minimal Model Counting

Consider the Boolean formula F = (aV bV c)A(—aV-bVd)A(-aV-bVe)
> MM(F) = {{a}, {b}, {c}}
> MM(Fi(s}) = {{a}, {b}. {c}}. But {b} U {e} & MM(F)

X Unit propagation on minimal model counting DOES NOT work

Slide 6/ 15

Challenges in Knowledge Compilation: Minimal Model Counting

Consider the Boolean formula F = (aV bV c)A(—aV-bVd)A(-aV-bVe)
> MM(F) = {{a}, {b},{c}}
> MM(Fi(ey) = {{a},{b},{c}}. But {b} U{e} & MM(F)
X Unit propagation on minimal model counting DOES NOT work
> MM(F) = {{a}, {b},{c}}
> F|{s,b} decomposes into two components containing variables d and e.
> F\{a,b} =dAe
» MM(d) = {d} and MM(e) = {e}
> However, {a, b} U{d} U {e} & MM(F)

X Simple Component Decomposition on minimal model counting DOES NOT work

Slide 6/ 15

Challenges in Knowledge Compilation: Minimal Model Counting

Consider the Boolean formula F = (aV bV c)A(—aV-bVd)A(-aV-bVe)
> MM(F) = {{a}, {b},{c}}
> MM(Fi(ey) = {{a},{b},{c}}. But {b} U{e} & MM(F)
X Unit propagation on minimal model counting DOES NOT work
> MM(F) = {{a}, {b},{c}}
> F|{s,b} decomposes into two components containing variables d and e.
> F\{a,b} =dAe
» MM(d) = {d} and MM(e) = {e}
> However, {a, b} U{d} U {e} & MM(F)

X Simple Component Decomposition on minimal model counting DOES NOT work

Reason: The assignment to variables is NOT justified.
In minimal model counting, unit propagation and component decomposition must be
applied on justified assignment

Slide 6/ 15

Knowledge Compilation over Justified Assignment

> Justified Assignment: Given an assignment 7, the justified assignment
T* = T| {veVar(F)|r(v)=0}» Where “|” denotes the projection

Slide 7/ 15

Knowledge Compilation over Justified Assignment

> Justified Assignment: Given an assignment 7, the justified assignment
T* = T| {veVar(F)|r(v)=0}» Where “|” denotes the projection

» Cut: C C Var(F) such that for every 7 € 2€, the formula F|, efficiently
decomposes into disjoint components (heuristically)

Slide 7/ 15

Knowledge Compilation over Justified Assignment

> Justified Assignment: Given an assignment 7, the justified assignment
T* = T| {veVar(F)|r(v)=0}» Where “|” denotes the projection

» Cut: C C Var(F) such that for every 7 € 2€, the formula F|, efficiently
decomposes into disjoint components (heuristically)

For each i € [1, k]
> pc2€and V... =T

> Unit propagation and Component decomposition on F{7»y preserve the
!
minimal models

Slide 7/ 15

Knowledge Compilation: Details

Data: Formula F and cut C
Result: [MM(F)|
Algorithm Proj-Enum(F,C)
cnt <0
B+ 0 // blocking assignments
while 30 € MinModelswithBlocking(F, B) do
T < 0C, d+1
foreach comp € Components(F|,+) do
// each disjoint components
d < d x |ProjMinModels(F, T, Var(comp))| // projected enumeration
end
cnt < cnt 4+ d // increment the number of models
B.add(T)
end
return cnt

Slide 8/ 15

Knowledge Compilation: Details

Data: Formula F and cut C
Result: [MM(F)|
Algorithm Proj-Enum(F,C)
cnt <0
B+ 0 // blocking assignments
while 30 € MinModelswithBlocking(F, B) do
T < 0C, d+1
foreach comp € Components(F|,+) do
// each disjoint components
d < d x |ProjMinModels(F, T, Var(comp))| // projected enumeration
end
cnt < cnt 4+ d // increment the number of models
B.add(T)
end
return cnt

Implementation Details:

> MinModelswithBlocking(F, B): Finding a minimal model of F, where B denotes
all blocking assignments

» ProjMinModels(F, 7, Y): Enumerate o € MM(F) such that o = 7 while
projecting onto the variable set of Y

» C: employing tree decomposition

Slide 8/ 15

Hashing-based Approximate Minimal Model Counting

Approximate Minimal Model Counting [CMV2013]
> (e, d)-approximate counting:
Input: formula F, tolerance ¢, and confidence &
Output: a count ¢ such that
Pr[IMM(A)l /1 +¢) < c < IMM(F)|x(1+¢€¢)]>1-96

> Counter: invoke ApproxASP [KESHFM2022] on DLP(F)

Slide 9/ 15

Hashing-based Approximate Minimal Model Counting

Approximate Minimal Model Counting [CMV2013]
> (e, d)-approximate counting:
Input: formula F, tolerance ¢, and confidence &
Output: a count ¢ such that
Pr[IMM(A)l /1 +¢) < c < IMM(F)|x(1+¢€¢)]>1-96

> Counter: invoke ApproxASP [KESHFM2022] on DLP(F)

Probabilistic Lower Bound on Minimal Models

> Input: formula F and confidence §
Output: a count ¢ such that

Prlc < IMM(F)[] > 1 - §

> Counter: invoke a modified ApproxASP on DLP(F)

Slide 9/ 15

Hashing-based Minimal Model Counting

Data: Formula F, independent support X', and confidence §
Result: [MM(F)|
Algorithm HashCount(F, X, d)
o< —log, (6) +1
generate |X|—1 XORs, namely QL ..., Qlxl-1
M < max kst. Ir€ MM(F) sit. 7= Q' A ... Q¥
return 20—«

Slide 10/ 15

Hashing-based Minimal Model Counting

Data: Formula F, independent support X', and confidence §
Result: [MM(F)|
Algorithm HashCount(F, X, d)
o< —log, (6) +1
generate |X|—1 XORs, namely QL ..., Qlxl-1
M < max kst. Ir€ MM(F) sit. 7= Q' A ... Q¥
return 20—«

Implementation Details:
» HashCount is similar to ApproxASP with thresh = 1
» HashCount utilizes a log search technique to find the value of m

> Compute independent support following the Padoa’s theorem [Padoal901]

Slide 10/ 15

Hashing-based Minimal Model Counting

Data: Formula F, independent support X', and confidence §
Result: [MM(F)|
Algorithm HashCount(F, X, d)
o< —log, (6) +1
generate |X|—1 XORs, namely QL ..., Qlxl-1
M < max kst. Ir€ MM(F) sit. 7= Q' A ... Q¥
return 20—«

Implementation Details:
» HashCount is similar to ApproxASP with thresh = 1
» HashCount utilizes a log search technique to find the value of m

> Compute independent support following the Padoa’s theorem [Padoal901]

Combining Both Algorithms: MinLB

» |If |Cut(F)| is small, then invoke Proj-Enum
» Otherwise, invoke HashCount

Slide 10/ 15

Experimental Result

Baselines:
»> Clingo
> ApproxASP

» #MinModels: subtractive approach:
the number of all models (#P) — the number of non-minimal models (#NP)

1https ://dtai.cs.kuleuven.be/CP4IM/datasets/

Slide 11/ 15

https://dtai.cs.kuleuven.be/CP4IM/datasets/

Experimental Result

Baselines:
» Clingo
> ApproxASP

» #MinModels: subtractive approach:
the number of all models (#P) — the number of non-minimal models (#NP)

Benchmarks:
» Model Counting Competition Benchmarks

» Minimal Generators Benchmark!

'https://dtai.cs.kuleuven.be/CP4IM/datasets/

Slide 11/ 15

https://dtai.cs.kuleuven.be/CP4IM/datasets/

Experimental Result

Baselines:
» Clingo
> ApproxASP

» #MinModels: subtractive approach:
the number of all models (#P) — the number of non-minimal models (#NP)

Benchmarks:
» Model Counting Competition Benchmarks

» Minimal Generators Benchmark!

Evaluation Metric

2xT, if no lower bound is returned

t+T % 1+log (Cnin+1)

THog (C41) otherwise

TQP(t,C) = {

'https://dtai.cs.kuleuven.be/CP4IM/datasets/

Slide 11/ 15

https://dtai.cs.kuleuven.be/CP4IM/datasets/

Model Counting benchmark

Clingo ApproxASP #MinModels MinLB (our prototype)
6491 6379 7743 5599

Minimal Generator benchmark
Clingo ApproxASP #MinModels MinLB (our prototype)
6944 5713 9705 5043

Slide 12/ 15

Visualization of Lower Bounds

500

w 5
g 8
8 g

log of models
g

—— Proj-Enum

——— ApproxASP
—— clingo

—— HashCount
—— #MinModels

0 20 40 80 100 120

60
instances

Model counting competition

40

log of models
g

8

Proj-Enum
ApproxASP
clingo
HashCount
#MinModels

6 8
instances

Minimal generator benchmark

Slide 13/ 15

Strengths and Weaknesses

X
20.04
1l X
1759
12
15.0
10
125
-8 100 x
6 7.5
X
o 5.0 % XX X
XX *x
2.5 X x xx X
2 " X
T T HC T T T 0.0 wx T T T T T T
100 200 300 400 500 600 250 500 750 1000 1250 1500 1750
Cut size Support size
Proj-Enum HashCount

The greater the value of r, the higher the quality.

Slide 14/ 15

Conclusion

We propose two methods for lower bounding minimal model count
» Proj-Enum outperforms when the cut size is small
» HashCount scales from small to medium independent support

> MinLB computes better lower bounds than existing systems.

https://github.com/meelgroup/minLB

Slide 15/ 15

https://github.com/meelgroup/minLB

