On Lower Bounding Minimal Model Count

Mohimenul Kabir^a and Kuldeep S $Meel^b$

^aNational University of Singapore ^bUniversity of Toronto

Minimal Models

- Propositional variable: v takes value either 0 or 1
- Literal: ℓ is either v or $\neg v$
- Clause: C is a disjunction of literals $\bigvee_i \ell_i$
- Formula: F is a conjunction of clauses $\bigwedge_i C_j$
- Assignment: τ assigns each variables τ : Var(F) → {0,1} where Var(F) denotes the variable set of F
- Model: $\tau \models F$ when τ evaluates F to be 1

Minimal Models

- Propositional variable: v takes value either 0 or 1
- Literal: ℓ is either v or $\neg v$
- Clause: C is a disjunction of literals $\bigvee_i \ell_i$
- Formula: F is a conjunction of clauses $\bigwedge_i C_j$
- Assignment: τ assigns each variables τ : Var(F) → {0,1} where Var(F) denotes the variable set of F
- Model: $\tau \models F$ when τ evaluates F to be 1
- Set Notation: $\{a \rightarrow 1, b \rightarrow 0, c \rightarrow 1\} \equiv \{a, c\}$
- Minimal Model: τ is a subset minimal model of F if $\not \exists \tau_2 \models F$ such that $\tau_2 < \tau$. Intuitively, the minimal set of variables assigned to 1 to satisfy the formula F
- Consider F = (a ∨ b) ∧ (a ∨ c). The formula F has five models. The minimal models of F: {a}, {b, c}. Note that the models {a, b}, {a, c}, {a, b, c} are NOT minimal
- ▶ Applications: Diagnosis [Reiter1987], Database System [Zaki2004], etc.

Minimal Models

- Propositional variable: v takes value either 0 or 1
- ► Literal: ℓ is either v or ¬v
- Clause: C is a disjunction of literals $\bigvee_i \ell_i$
- Formula: F is a conjunction of clauses $\bigwedge_i C_j$
- Assignment: τ assigns each variables τ : Var(F) → {0,1} where Var(F) denotes the variable set of F
- Model: $\tau \models F$ when τ evaluates F to be 1
- Set Notation: $\{a \rightarrow 1, b \rightarrow 0, c \rightarrow 1\} \equiv \{a, c\}$
- Minimal Model: τ is a subset minimal model of F if $\not \exists \tau_2 \models F$ such that $\tau_2 < \tau$. Intuitively, the minimal set of variables assigned to 1 to satisfy the formula F
- Consider F = (a ∨ b) ∧ (a ∨ c). The formula F has five models. The minimal models of F: {a}, {b, c}. Note that the models {a, b}, {a, c}, {a, b, c} are NOT minimal
- Applications: Diagnosis [Reiter1987], Database System [Zaki2004], etc.
- Property: Each of the variables within a minimal model must be justified. For formula F = (a ∨ b) ∧ (a ∨ c),

• $\tau = \{a\}$, if a is flipped to false, then it falsifies both of the clauses

 Goal: Lower bounding the number of minimal models of F (i.e., lower bounding |MM(F)|)

Answer Set Programming

Roots in logic programming and nonmonotonic reasoning

A rule-based language for problem encoding

 $\underline{\frac{h_1 \vee \ldots \vee h_\ell}{_{head}}} \leftarrow \underline{b_1, \ldots, b_k, \sim b_{k+1}, \ldots, \sim b_{k+m}}.$

Answer Set Programming

Roots in logic programming and nonmonotonic reasoning

A rule-based language for problem encoding

$$\underbrace{\frac{h_1 \vee \ldots \vee h_\ell}{head}}_{bead} \leftarrow \underbrace{b_1, \ldots, b_k, \sim b_{k+1}, \ldots, \sim b_{k+m}}_{body}.$$

- An ASP program $P \equiv$ set of rules.
- The model of P is an answer set (denoted as AS(P)).

Answer Set Programming

Roots in logic programming and nonmonotonic reasoning

A rule-based language for problem encoding

$$\underbrace{\frac{h_1 \vee \ldots \vee h_\ell}{head}}_{bead} \leftarrow \underbrace{b_1, \ldots, b_k, \sim b_{k+1}, \ldots, \sim b_{k+m}}_{body}.$$

- An ASP program $P \equiv$ set of rules.
- ▶ The model of *P* is an *answer set* (denoted as AS(*P*)).
- Answer set programming follows the *default negation* everything is false unless there are some justifications.

• Consider an ASP program,
$$P = \{\underline{a \leftarrow b.}_{r_1} \ \underline{b \leftarrow a.}_{r_2} \ \underline{s \leftarrow \sim a.}_{r_3} \ \underline{a \leftarrow t.}\}$$

- $\{s\} \in AS(P)$, since s is justified by r_3
- ▶ $\{a, b\} \notin AS(P)$, since a and b are not justified

From Minimal Models to Answer Set Programming

- We can compute minimal models of a formula by answer set solving
- For a Boolean formula F, we can compute an ASP program DLP(F) such that AS(DLP(F)) = MM(F)

From Minimal Models to Answer Set Programming

We can compute minimal models of a formula by answer set solving

▶ For a Boolean formula F, we can compute an ASP program DLP(F) such that AS(DLP(F)) = MM(F)

DLP(F):

▶ for each clause $C = \ell_1 \lor \ldots \lor \ell_k \lor \neg \ell_{k+1} \lor \ldots \lor \neg \ell_{k+m} \in F$, we introduce a rule to DLP(F) as follows:

 $\ell_1 \vee \ldots \ell_k \leftarrow \ell_{k+1}, \ldots, \ell_{k+m}.$

From Minimal Models to Answer Set Programming

We can compute minimal models of a formula by answer set solving

For a Boolean formula F, we can compute an ASP program DLP(F) such that AS(DLP(F)) = MM(F)

DLP(F):

▶ for each clause $C = \ell_1 \lor \ldots \lor \ell_k \lor \neg \ell_{k+1} \lor \ldots \lor \neg \ell_{k+m} \in F$, we introduce a rule to DLP(F) as follows:

$$\ell_1 \vee \ldots \ell_k \leftarrow \ell_{k+1}, \ldots, \ell_{k+m}.$$

Example:

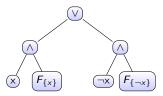
- Consider $F = (a \lor b) \land (a \lor c)$
- $\blacktriangleright \mathsf{DLP}(F) = \{a \lor b \leftarrow . a \lor c \leftarrow .\}$
- $AS(DLP(F)) = \{\{a\}, \{b, c\}\}$

Knowledge Compilation

 Knowledge compilation [Thurley2006] is an ingredient for model counters (model counting is polytime over the knowledge compilation)

Knowledge Compilation

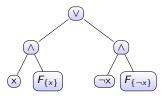
- Knowledge compilation [Thurley2006] is an ingredient for model counters (model counting is polytime over the knowledge compilation)
- Shannon Expansion



Unit Propagation: For $x \in Var(F)$, $\tau \models F_{|\{x\}}$ if and only if $\{x\} \cup \tau \models F$

Knowledge Compilation

- Knowledge compilation [Thurley2006] is an ingredient for model counters (model counting is polytime over the knowledge compilation)
- Shannon Expansion



Unit Propagation: For $x \in Var(F)$, $\tau \models F_{|\{x\}}$ if and only if $\{x\} \cup \tau \models F$

• Component Decomposition: For two formulas F_1 and F_2 where $Var(F_1) \cap Var(F_2) = \emptyset$, it holds that $\tau_1 \models F_1$ and $\tau_2 \models F_2$ if and only if $\tau_1 \cup \tau_2 \models F_1 \land F_2$



Challenges in Knowledge Compilation: Minimal Model Counting

Consider the Boolean formula $F = (a \lor b \lor c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor \neg b \lor e)$

- $MM(F) = \{\{a\}, \{b\}, \{c\}\}\}$
- ▶ $\mathsf{MM}(F_{|\{e\}}) = \{\{a\}, \{b\}, \{c\}\}.$ But $\{b\} \cup \{e\} \notin \mathsf{MM}(F)$

× Unit propagation on minimal model counting DOES NOT work

Challenges in Knowledge Compilation: Minimal Model Counting

Consider the Boolean formula $F = (a \lor b \lor c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor \neg b \lor e)$

•
$$MM(F) = \{\{a\}, \{b\}, \{c\}\}$$

•
$$MM(F_{|\{e\}}) = \{\{a\}, \{b\}, \{c\}\}.$$
 But $\{b\} \cup \{e\} \notin MM(F)$

× Unit propagation on minimal model counting DOES NOT work

•
$$MM(F) = \{\{a\}, \{b\}, \{c\}\}\}$$

F_{$|{a,b}} decomposes into two components containing variables d and e.</sub>$

$$\blacktriangleright F_{|\{a,b\}} = d \wedge e$$

•
$$MM(d) = \{d\}$$
 and $MM(e) = \{e\}$

▶ However, $\{a, b\} \cup \{d\} \cup \{e\} \notin MM(F)$

× Simple Component Decomposition on minimal model counting DOES NOT work

Challenges in Knowledge Compilation: Minimal Model Counting

Consider the Boolean formula $F = (a \lor b \lor c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor \neg b \lor e)$

•
$$MM(F) = \{\{a\}, \{b\}, \{c\}\}$$

•
$$MM(F_{|\{e\}}) = \{\{a\}, \{b\}, \{c\}\}.$$
 But $\{b\} \cup \{e\} \notin MM(F)$

× Unit propagation on minimal model counting DOES NOT work

•
$$MM(F) = \{\{a\}, \{b\}, \{c\}\}\}$$

F_{$|{a,b}} decomposes into two components containing variables d and e.</sub>$

$$\blacktriangleright F_{|\{a,b\}} = d \wedge e$$

•
$$MM(d) = \{d\}$$
 and $MM(e) = \{e\}$

▶ However, $\{a, b\} \cup \{d\} \cup \{e\} \notin MM(F)$

× Simple Component Decomposition on minimal model counting DOES NOT work

Reason: The assignment to variables is NOT justified.

In minimal model counting, unit propagation and component decomposition must be applied on justified assignment

Knowledge Compilation over Justified Assignment

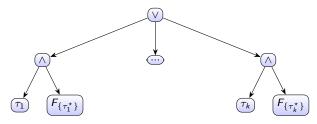
► Justified Assignment: Given an assignment τ , the justified assignment $\tau^* = \tau_{\downarrow \{v \in Var(F) | \tau(v)=0\}}$, where "↓" denotes the *projection*

Knowledge Compilation over Justified Assignment

- ▶ Justified Assignment: Given an assignment τ , the justified assignment $\tau^* = \tau_{\downarrow \{v \in Var(F) | \tau(v)=0\}}$, where "↓" denotes the *projection*
- ▶ **Cut:** $C \subset Var(F)$ such that for every $\tau \in 2^C$, the formula $F_{|\tau}$ efficiently *decomposes* into disjoint components (heuristically)

Knowledge Compilation over Justified Assignment

- ▶ Justified Assignment: Given an assignment τ , the justified assignment $\tau^* = \tau_{\downarrow \{v \in Var(F) | \tau(v)=0\}}$, where "↓" denotes the *projection*
- ▶ **Cut:** $C \subset Var(F)$ such that for every $\tau \in 2^C$, the formula $F_{|\tau}$ efficiently *decomposes* into disjoint components (heuristically)



For each $i \in [1, k]$

•
$$\tau_i \in 2^{\mathcal{C}}$$
 and $\tau_1 \lor \ldots \tau_k = \top$

▶ \checkmark Unit propagation and Component decomposition on $F_{\{\tau_i^*\}}$ preserve the minimal models

Knowledge Compilation: Details

```
Data: Formula F and cut C
Result: |MM(F)|
Algorithm Proj-Enum(F, C)
    cnt \leftarrow 0
    \mathcal{B} \leftarrow \emptyset // blocking assignments
    while \exists \sigma \in MinModelswithBlocking(F, B) do
         \tau \leftarrow \sigma_{\downarrow C}, d \leftarrow 1
         foreach comp \in Components(F|_{\tau^*}) do
             // each disjoint components
             d \leftarrow d \times |ProjMinModels(F, \tau, Var(comp))| // projected enumeration
         end
         cnt \leftarrow cnt + d // increment the number of models
         \mathcal{B}.add(\tau)
    end
    return cnt
```

Knowledge Compilation: Details

```
Data: Formula F and cut C
Result: |MM(F)|
Algorithm Proj-Enum(F, C)
    cnt \leftarrow 0
    \mathcal{B} \leftarrow \emptyset // blocking assignments
    while \exists \sigma \in MinModelswithBlocking(F, B) do
         \tau \leftarrow \sigma_{\perp C}, d \leftarrow 1
         foreach comp \in Components(F|_{\tau^*}) do
             // each disjoint components
             d \leftarrow d \times |ProjMinModels(F, \tau, Var(comp))| // projected enumeration
         end
         cnt \leftarrow cnt + d // increment the number of models
         \mathcal{B}.add(\tau)
    end
    return cnt
```

Implementation Details:

- MinModelswithBlocking(F, B): Finding a minimal model of F, where B denotes all blocking assignments
- ▶ ProjMinModels(F, τ, Y): Enumerate $\sigma \in MM(F)$ such that $\sigma \models \tau$ while projecting onto the variable set of Y
- C: employing tree decomposition

Hashing-based Approximate Minimal Model Counting

Approximate Minimal Model Counting [CMV2013]

(ε, δ)-approximate counting:
 Input: formula F, tolerance ε, and confidence δ
 Output: a count c such that

 $\Pr[|\mathsf{MM}(F)|/(1+\epsilon) \le c \le |\mathsf{MM}(F)| \times (1+\epsilon)] \ge 1-\delta$

Counter: invoke ApproxASP [KESHFM2022] on DLP(F)

Hashing-based Approximate Minimal Model Counting

Approximate Minimal Model Counting [CMV2013]

(ε, δ)-approximate counting:
 Input: formula F, tolerance ε, and confidence δ
 Output: a count c such that

 $\Pr[|\mathsf{MM}(F)|/(1+\epsilon) \le c \le |\mathsf{MM}(F)| \times (1+\epsilon)] \ge 1-\delta$

Counter: invoke ApproxASP [KESHFM2022] on DLP(F)

Probabilistic Lower Bound on Minimal Models

Input: formula F and confidence δ
 Output: a count c such that

 $\Pr[c \leq |\mathsf{MM}(F)|] \geq 1 - \delta$

Counter: invoke a modified ApproxASP on DLP(F)

Hashing-based Minimal Model Counting

Hashing-based Minimal Model Counting

Implementation Details:

- HashCount is similar to ApproxASP with thresh = 1
- HashCount utilizes a log search technique to find the value of m̂
- Compute independent support following the Padoa's theorem [Padoa1901]

Hashing-based Minimal Model Counting

```
Data: Formula F, independent support \mathcal{X}, and confidence \delta

Result: |\mathsf{MM}(F)|

Algorithm HashCount(F, \mathcal{X}, \delta)

\alpha \leftarrow -\log_2(\delta) + 1

generate |\mathcal{X}| - 1 XORs, namely Q^1, \dots, Q^{|\mathcal{X}| - 1}

\hat{\mathfrak{m}} \leftarrow \max k \text{ s.t. } \exists \tau \in \mathsf{MM}(F) \text{ s.t. } \tau \models Q^1 \land \dots Q^k

return 2^{\hat{\mathfrak{m}} - \alpha}
```

Implementation Details:

- HashCount is similar to ApproxASP with thresh = 1
- HashCount utilizes a log search technique to find the value of m̂
- Compute independent support following the Padoa's theorem [Padoa1901]

Combining Both Algorithms: MinLB

- ▶ If |Cut(F)| is small, then invoke Proj-Enum
- Otherwise, invoke HashCount

Experimental Result

Baselines:

- Clingo
- ApproxASP
- #MinModels: subtractive approach: the number of all models (#P) – the number of non-minimal models (#NP)

¹https://dtai.cs.kuleuven.be/CP4IM/datasets/

Experimental Result

Baselines:

- Clingo
- ApproxASP

```
    #MinModels: subtractive approach:
the number of all models (#P) – the number of non-minimal models (#NP)
```

Benchmarks:

- Model Counting Competition Benchmarks
- Minimal Generators Benchmark¹

¹https://dtai.cs.kuleuven.be/CP4IM/datasets/

Experimental Result

Baselines:

- Clingo
- ApproxASP

```
    #MinModels: subtractive approach:
the number of all models (#P) – the number of non-minimal models (#NP)
```

Benchmarks:

- Model Counting Competition Benchmarks
- Minimal Generators Benchmark¹

Evaluation Metric

$$\mathsf{TQP}(t, C) = \begin{cases} 2 \times \mathcal{T}, & \text{if } r \\ t + \mathcal{T} \times \frac{1 + \log \left(C_{\min} + 1 \right)}{1 + \log \left(C + 1 \right)}, & \text{oth} \end{cases}$$

f no lower bound is returned otherwise

¹https://dtai.cs.kuleuven.be/CP4IM/datasets/

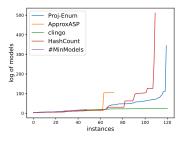
Model Counting benchmark

Clingo	ApproxASP	#MinModels	MinLB (our prototype)
6491	6379	7743	5599

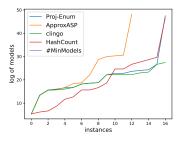
Minimal Generator benchmark

Clingo	ApproxASP	# MinModels	MinLB (our prototype)
6944	5713	9705	5043

Visualization of Lower Bounds

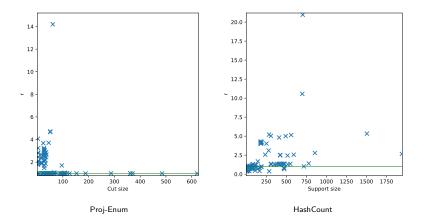


Model counting competition



Minimal generator benchmark

Strengths and Weaknesses



The greater the value of r, the higher the quality.

Conclusion

We propose two methods for lower bounding minimal model count

- Proj-Enum outperforms when the cut size is small
- HashCount scales from small to medium independent support
- MinLB computes better lower bounds than existing systems.

https://github.com/meelgroup/minLB