Tool Paper: A Simple and Effective ASP-Based Tool for Enumerating Minimal Hitting Sets

Mohimenul Kabir^a and Kuldeep S Meel b,c

^aNational University of Singapore ^bGeorgia Institute of Technology ^cUniversity of Toronto

41st International Conference on Logic Programming (ICLP), Rende, Italy, 2025

Minimal Hitting Sets

- ▶ Input: A family of sets $S = \{S_1, ..., S_k\}$
- ▶ \blacksquare Hitting Set: a set h such that $\forall_{S_i \in \mathcal{S}} h \cap S_i \neq \emptyset$ [VO2000]
- ▶ \blacksquare Minimal Hitting Set: a hitting set h of S when no $h' \subset h$ is a hitting set of S

Minimal Hitting Sets

- ▶ Input: A family of sets $S = \{S_1, ..., S_k\}$
- ▶ **!** Hitting Set: a set h such that $\forall S_i \in S h \cap S_i \neq \emptyset$ [VO2000]
- ▶ \blacksquare Minimal Hitting Set: a hitting set h of S when no $h' \subset h$ is a hitting set of S
- **Example:** consider $S = \{\{1,2\}, \{3\}, \{2,3,4\}\}.$
 - ▶ The set $\{1,3\}$ hits each set of $\{\{1,2\}, \{3\}, \{2,3,4\}\}$. No proper subset of $\{1,3\}$ hits every set of S.
 - The set $\{2,3\}$ hits each set of $\{\{1,2\},\{3\},\{2,3,4\}\}$. No proper subset of $\{2,3\}$ hits every set of S.
- Applications: diagnosis [Reiter1987;AG2009], explanability [SU2006], data mining [BMR2003], and bioinformatics and computational biology [KG2004].

Minimal Hitting Sets

- ▶ Input: A family of sets $S = \{S_1, ..., S_k\}$
- ▶ \blacksquare Hitting Set: a set h such that $\forall_{S_i \in S} h \cap S_i \neq \emptyset$ [VO2000]
- ▶ \blacksquare Minimal Hitting Set: a hitting set h of S when no $h' \subset h$ is a hitting set of S
- **Example:** consider $S = \{\{1,2\}, \{3\}, \{2,3,4\}\}.$
 - ▶ The set $\{1,3\}$ hits each set of $\{\{1,2\},\{3\},\{2,3,4\}\}$. No proper subset of $\{1,3\}$ hits every set of S.
 - The set $\{2,3\}$ hits each set of $\{\{1,2\},\{3\},\{2,3,4\}\}$. No proper subset of $\{2,3\}$ hits every set of S.
- Applications: diagnosis [Reiter1987;AG2009], explanability [SU2006], data mining [BMR2003], and bioinformatics and computational biology [KG2004].
- ▶ 🖾 Our Goal: All minimal hitting sets (MHS) enumeration
- ▶ All MHSes Applications: Fault diagnosis [Reiter1987], system biology [VBB⁺2013]

- Roots in logic programming and nonmonotonic reasoning
- A rule-based language for problem encoding

$$\frac{\textit{h}_1 \lor ... \lor \textit{h}_\ell}{\textit{head}} \leftarrow \underbrace{\textit{b}_1, ..., \textit{b}_k, \sim \textit{b}_{k+1}, ..., \sim \textit{b}_{k+m}.}_{\textit{body}}$$

- Roots in logic programming and nonmonotonic reasoning
- A rule-based language for problem encoding

$$\frac{h_1 \vee ... \vee h_\ell}{{}^{\textit{head}}} \leftarrow \underbrace{b_1, ..., b_k, \sim b_{k+1}, ..., \sim b_{k+m}.}_{\textit{body}}$$

- ▶ An ASP program $P \equiv \text{set of rules}$.
- ▶ The model of P is an answer set (denoted as AS(P)).

- Roots in logic programming and nonmonotonic reasoning
- A rule-based language for problem encoding

$$\underbrace{h_1 \vee ... \vee h_\ell}_{\textit{head}} \leftarrow \underbrace{b_1, ..., b_k, \sim b_{k+1}, ..., \sim b_{k+m}.}_{\textit{body}}$$

- ▶ An ASP program $P \equiv \text{set of rules}$.
- ► The model of P is an answer set (denoted as AS(P)).
- Answer set programming follows the default negation everything is false unless there are some justifications.
- ► Consider an ASP program, $P = \{\underbrace{a \lor b \leftarrow \top.}_{r_1}\}$
 - ▶ $\{a\} \in AS(P)$, since a is justified by r_1 and b is false
 - ▶ $\{b\}$ ∈ AS(P), since b is justified by r_1 and a is false
 - ▶ $\{a, b\} \notin AS(P)$, since a and b are not justified

- Roots in logic programming and nonmonotonic reasoning
- A rule-based language for problem encoding

$$\frac{\textit{h}_1 \lor ... \lor \textit{h}_\ell}{\textit{head}} \leftarrow \underbrace{\textit{b}_1, ..., \textit{b}_k, \sim \textit{b}_{k+1}, ..., \sim \textit{b}_{k+m}.}_{\textit{body}}$$

- ▶ An ASP program $P \equiv \text{set of rules}$.
- ▶ The model of P is an answer set (denoted as AS(P)).
- Answer set programming follows the default negation everything is false unless there are some justifications.
- ► Consider an ASP program, $P = \{\underline{a \lor b \leftarrow \top}.\}$
 - ▶ $\{a\} \in AS(P)$, since a is justified by r_1 and b is false
 - ▶ $\{b\} \in AS(P)$, since b is justified by r_1 and a is false
 - ▶ $\{a, b\} \notin AS(P)$, since a and b are not justified
- ▶ Main Contribution: An ASP-based MHS enumeration tool MinHit-ASP.

- \blacktriangleright We can compute MHSes of $\mathcal S$ by answer set solving
- ▶ For a family of sets S, there is an ASP program P(S) such that AS(P(S)) correspondence to minimal hitting sets of S

- ightharpoonup We can compute MHSes of S by answer set solving
- ▶ For a family of sets S, there is an ASP program P(S) such that AS(P(S)) correspondence to minimal hitting sets of S
- $\mathsf{P}(\mathcal{S})$ Encoding:
 - ▶ for each set $S_i = \{a_1, ..., a_\ell\} \in S$, we introduce a rule to P(S) as follows:

$$a_1 \lor \ldots \lor a_\ell \leftarrow \top$$
.

- ightharpoonup We can compute MHSes of ${\cal S}$ by answer set solving
- ▶ For a family of sets S, there is an ASP program P(S) such that AS(P(S)) correspondence to minimal hitting sets of S
- $\mathsf{P}(\mathcal{S})$ Encoding:
 - ▶ for each set $S_i = \{a_1, ..., a_\ell\} \in S$, we introduce a rule to P(S) as follows:

$$a_1 \lor \ldots \lor a_\ell \leftarrow \top$$
.

- \bigcirc Correctness of P(S):
 - ightharpoonup every answer set hits every set of $\mathcal S$
 - every answer set is minimal hitting set due to Justification

- ightharpoonup We can compute MHSes of S by answer set solving
- ▶ For a family of sets S, there is an ASP program P(S) such that AS(P(S)) correspondence to minimal hitting sets of S
- $\mathsf{P}(\mathcal{S})$ Encoding:
 - ▶ for each set $S_i = \{a_1, ..., a_\ell\} \in S$, we introduce a rule to P(S) as follows:

$$a_1 \lor \ldots \lor a_\ell \leftarrow \top$$
.

- \bigcirc Correctness of P(S):
 - ightharpoonup every answer set hits every set of S
 - every answer set is minimal hitting set due to Justification
- **Example:** consider $S = \{\{1,2\},\{3\},\{2,3,4\}\}$
 - $P(S) = \{1 \lor 2 \leftarrow \top. \ 3 \leftarrow \top. \ 2 \lor 3 \lor 4 \leftarrow \top. \}$
 - ▶ P(S) has two answer sets: $\{1,3\}$ and $\{2,3\}$, which correspond to two MHSes $(\{1,3\}$ and $\{2,3\})$ of S.

Experimental Evaluation

Benchmark sources:

- 1. unique column combinations [BBF⁺2020]
- 3. metabolic reactions [HK2011]
- 5. Connect-4 board game [DG2017]
- 7. graph theory [BEG⁺2003]
- 9. randomly generated instances [MU2013]

- 2. cluster vertex deletion [VO2020]
- 4. cell signaling networks [ZS2005]
- 6. frequent itemset mining [MU2013]
- 8. ISCAS85 circuits [KNP⁺2009]

Experimental Evaluation

Benchmark sources:

1. unique column combinations [BBF⁺2020] 2. cluster vertex deletion [VO2020]
3. metabolic reactions [HK2011] 4. cell signaling networks [ZS2005]
5. Connect-4 board game [DG2017] 6. frequent itemset mining [MU2013]
7. graph theory [BEG⁺2003] 8. ISCAS85 circuits [KNP⁺2009]
9. randomly generated instances [MU2013]

Baselines:

1. Hitman [AAJ2018]	2. SHD [MU2013]
3. MtMiner [HBC2007]	4. SAT solver [ES2003;LYZ ⁺ 2021]
5. Gurobi v11.0.1	

Experimental Evaluation

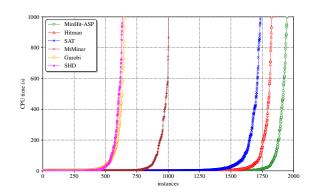
Benchmark sources:

1. unique column combinations [BBF ⁺ 2020]	2. cluster vertex deletion [VO2020]
3. metabolic reactions [HK2011]	4. cell signaling networks [ZS2005]
5. Connect-4 board game [DG2017]	6. frequent itemset mining [MU2013]
7. graph theory [BEG ⁺ 2003]	8. ISCAS85 circuits [KNP ⁺ 2009]
9. randomly generated instances [MU2013]	

Baselines:

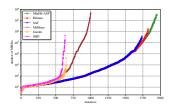
1. Hitman [AAJ2018]	2. SHD [MU2013]
3. MtMiner [HBC2007]	4. SAT solver [ES2003;LYZ ⁺ 2021]
5. Gurobi v11.0.1	

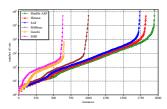
Experimental Settings:


A single core, with a time limit of 1000 seconds, a memory limit of 16 GB

Experimental Results

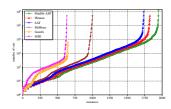
	SAT	ILP	MtMiner	SHD	Hitman	MinHit-ASP
#Solved	1735	647	1002	633	1846	1948

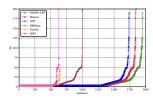

Experimental Results


	SAT	ILP	MtMiner	SHD	Hitman	MinHit-ASP
#Solved	1735	647	1002	633	1846	1948
			VBS1			+MinHit-ASP
#Solved			1906			2000 (+ 94)

Strengths and Weaknesses

Strengths: MinHit-ASP is competitive with the existing MHS solvers in terms of the number of MHSes enumerated and size of the instances.




Strengths and Weaknesses

Strengths: MinHit-ASP is competitive with the existing MHS solvers in terms of the number of MHSes enumerated and size of the instances.

Weaknesses: MinHit-ASP struggles with instances with larger size or higher disjunctions

Conclusion

- ▶ We introduce MinHit-ASP, an ASP-based tool for MHSes enumeration
- Our tool supports versatile features: brave and cautious reasoning, preference among MHSes, counting MHSes, and others.
- ▶ MinHit-ASP outperforms existing MHS solvers in enumerating all MHSes

https://zenodo.org/records/15104697