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Boolean Network (BN)

A Boolean Network N' = (V, F), where
> V ={vi,...,va} is a set of nodes

> F={f,...,fa} is a set of associated Boolean functions
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Update Scheme: At time t, node v; € V can update its state by si+1(v;) = fi(st).
» Asynchronous: exactly one node updated at each time step non-deterministically.

» Synchronous: all nodes updated at each time step.
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> F={f,...,fa} is a set of associated Boolean functions
Update Scheme: At time t, node v; € V can update its state by si+1(v;) = fi(st).
» Asynchronous: exactly one node updated at each time step non-deterministically.

» Synchronous: all nodes updated at each time step.

00 «— 01

V ={a, b}
fa=(aA-b)
fr=a 10 — 11
Boolean network N STG(N)
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Trap spaces in BN

A sub-space is a map m: V — {0, 1, x} representing a state hypercube.
> 0x ~ {00,01}
> 11~ {11}
> ok ~ {00,01,10,11}

where, * denotes the variable is free; otherwise the variable is fixed.
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Trap spaces in BN

A sub-space is a map m: V — {0, 1, x} representing a state hypercube.
> 0x ~ {00,01}
> 11 ~ {11}
> s+ ~ {00,01,10,11}
where, * denotes the variable is free; otherwise the variable is fixed.
» Trap Space: A sub-space that is a set of states from which the system cannot
escape once entered.
» Minimal Trap Space (MTS): A trap space that has no other smaller trap spaces.

> Fixed Point (FIX): A special case of minimal trap space where no variable is free.

Notably, trap spaces are independent of the employed update scheme [KBS2015].
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Trap spaces in BN

A sub-space is a map m: V — {0, 1, x} representing a state hypercube.
> 0x ~ {00,01}
> 11 ~ {11}
> 4x ~ {00,01,10,11}

where, * denotes the variable is free; otherwise the variable is fixed.

» Trap Space: A sub-space that is a set of states from which the system cannot
escape once entered.

»> Minimal Trap Space (MTS): A trap space that has no other smaller trap spaces.

» Fixed Point (FIX): A special case of minimal trap space where no variable is free.

fp=a

{fa = (a A —b)

Boolean network N
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Some Definitions

Definition (Phenotype)

A trait is a statement of form: (v +— e), where v € Var(N) and e € {0, 1, x}.
A phenotype 3 is the conjunction of a set of traits, 8 = A\;(vi +— €;).
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Definition (Perturbation)

A perturbation o over a set of perturbable variables X C Var(\) is a mapping as
X — {0,1,x}. For each variable v € Var(N),

fy, =0 knockout
o(v) =4 f, =1 over-expression
fv = * f, is unchanged
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Definition (Phenotype)

A trait is a statement of form: (v +— e), where v € Var(N) and e € {0, 1, x}.
A phenotype 3 is the conjunction of a set of traits, 8 = A\;(vi +— €;).
Definition (Perturbation)

A perturbation o over a set of perturbable variables X C Var(\) is a mapping as
X — {0,1,x}. For each variable v € Var(N),

f, =0 knockout
o(v) =4 f, =1 over-expression

fv = * f, is unchanged

Definition (Perturbed BN)

Given a perturbation o, the perturbed Boolean Network N'° = (V7,F°) where
V? = V and for each variable v € N,

- o(v) ifveXando(v)#*
fy = .
iy otherwise
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Answer Set Programming (ASP)

» Roots in logic programming and non-monotonic reasoning

» A rule-based language for problem encoding

V.. hg < by, ....bg,~bry1, .-, ~ brim-

head body
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Answer Set Programming (ASP)

v

Roots in logic programming and non-monotonic reasoning

v

A rule-based language for problem encoding

mV...hp < b1, ... .bg, ~byya, s~ by
head body

v

An ASP program P = set of rules.

v

Definitions:

» Program P is called disjunctive if 3r € P s.t. |Head(r)|> 1 [EG95]
» Otherwise, program P is called normal

» The model of P is an answer set (denoted as AS(P)).
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Answer Set Programming (ASP)

v

Roots in logic programming and non-monotonic reasoning

A rule-based language for problem encoding

mV...hp < b1, ... .bg, ~byya, s~ by
head body

An ASP program P = set of rules.
Definitions:

» Program P is called disjunctive if 3r € P s.t. |Head(r)|> 1 [EG95]
» Otherwise, program P is called normal

The model of P is an answer set (denoted as AS(P)).
Answer set programming has close relationship with Systems Biology

Existing and efficient trap spaces enumeration techniques rely on ASP and ASP
solvers [KBS2015;PKC*2020; TBH*2023; TBS2023; TBP*2024].
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New Challenges: Quantitative Reasoning on BN

A Existing works focus on qualititive reasoning on BN (e.g., finding a trap space).
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New Challenges: Quantitative Reasoning on BN

A Existing works focus on qualititive reasoning on BN (e.g., finding a trap space).

@ Interesting and biologically motivated research directions: Quantitative Reasoning

How to do How is the How to quantify
Probabilistic likelihood of a Robustness of

Reasoning on BN? phenotype in a BN? a phenotype?
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Our Contributions

We propose six meaningful counting problems on Boolean Networks.

1st problems 2nd problems 3rd problems
Input BN N BN N, BN A/, phenotype £3,
phenotype perturbables X
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Our Contributions

We propose six meaningful counting problems on Boolean Networks.

1st problems

2nd problems

3rd problems

Input BN N BN N, BN A/, phenotype £3,
phenotype perturbables X

FIXs : : :

Formulation  #FIXs of #F1Xs of NV, #FIXs of N, satisfying
satisfying 8 3, over perturbed BNs

MTSs : : :

Formulation ~ #MTSs of N #MTSs of N, #MTSs of N,
satisfying 8 satisfying 3, over

perturbed BNs
Applications  probabilistic quantifying phenotype robustness
reasoning on BN emergence of

phenotype
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Counting Methodologies: from high-level

FEX —— #AS(P)ja
lO\ KO\ *
o O O A={.}
Given NV, 8, X
» The counting problems and reduce to projected answer set

counting and the projection set A is derived from perturbable variables X.

» For remaining counting problems, the projection set A is trivial.
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Counting Formulation for and
1. Capture all 2. Satisfy
FIXs/MTSs Phenotype

3. Capture all
FIXs/MTSs over
perturbations
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Capture all FIXs/MTSs (1/3)

> C-FIX-1: £ASP [TBS2023| captures the fixed points
the answer sets of the program one-to-one correspond with the FIXs of
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Capture all FIXs/MTSs (1/3)

> : £ASP [TBS2023] captures the fixed points
the answer sets of the program one-to-one correspond with the FIXs of

> : tsconj [TBP 2024 captures the minimal trap spaces
the answer sets of the program one-to-one correspond with the MTSs of A/

Q2 ASP Encodings

fASP(N)  for all FIXs
P= _
tsconj(N)  for all MTSs

® Some Notes on tsconj and £ASP
» for each variable v € Var(/\), there are two atoms p(v) and n(v)

> The relationship between answer set A of the program P and sub-space m of N
is that for every variable v € Var(N):
» m(v) =1if and only if p(v) € Aand n(v) € A
» m(v) =0 if and only if p(v) € Aand n(v) € A
» m(v) =« if and only if p(v) € Aand n(v) € A
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Counting Formulation for and
1. Capture all 2. Satisfy
FIXs/MTSs v’ Phenotype

3. Capture all
FIXs/MTSs over
perturbations
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Satisfy Phenotype (2/3)
D A phenotype B = \;(vi +— €;), where e; € {0, 1, x}.
Data: Phenotype 8

Result: ASP Program Q
Algorithm PhenToASP(S)

Q<+ 0
foreach (v <— e) € 8 do
if e =1 then

| Q.add(L + ~p(v), L+ n(v))
else if e = 0 then
| Q.add(L «+ p(v), L+ ~n(v))
else if e = x then
| Q.add(L + ~p(v), L+ ~n(v))
end
return Q
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Satisfy Phenotype (2/3)

D A phenotype B = \;(vi +— €;), where e; € {0, 1, x}.

Data: Phenotype 8
Result: ASP Program Q

Algorithm PhenToASP(S)

Q<+ 0
if e =1 then
else if e = 0 then
else if e = x then

end
return Q

Q7 ASP Encodings

P = PhenToASP(8) A {

foreach (v <— e) € 8 do
| Q.add(L + ~p(v),
| Q.add(L < p(v),

| Q.add(L « ~p(v),

1L+ n(v))
1L+ ~n(v))

L+ ~n(v))

fASP(N\)

for FIXs satisfying (3
tsconj(N) for MTSs satisfying 3



Counting Formulation for

and

1. Capture all
MTSs/FIXs v~

2. Satisfy Phe-
notype v’

3. Capture
MTSs/FIXs over
perturbations
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Counting over Perturbations (3/3)

Definition (New BN)

Given a BN N and a set of perturbable variables X', we construct a new BN N such
that for every v € Var(f), if v € Var(f) \ X, then the variable v € Var(N) and,

fv = fv
if v € X, then three variables v, vk, v° € Var(N) and

[

VKA (VO V1),
k

)

<"*‘

>
Il
<

fro = v A vk,
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Counting over Perturbations (3/3)

Definition (New BN)

Given a BN N and a set of perturbable variables X', we construct a new BN N such
that for every v € Var(f), if v € Var(f) \ X, then the variable v € Var(N) and,

fv =1y

if v € X, then three variables v, vk, v® € Var(N) and

VKA (VO V1),

vk7

[

<"*‘
=
Il

fro = v A vk,

vk 1% fv Interpretation

1 0 0 knockout perturbation

0 1 1 over-expression perturbation

0 0 fv v is unperturbed

1 1 - infeasible due to fo = v° A -k
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Counting Formulation of 3rd Problems

Q A,

P=3E£5 —— #AS(P)ja
28, e
O O O A={.}

Given NV, 8, X

&5 ASP Encodings

fASP(N)  for —

P = PhenToASP A —_ s N is th BN
enTo (B) {tsconj(]\f) for is the new

A= U {vk,vo}

veX
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Experimental Evaluation

Benchmark
Total 645 Boolean Networks from BN literature [TBP 2024, TBS2023]:

» 245 real-world
» 400 randomly generated
with up to 5,000 variables.

Phenotype and Perturbables Variables Selection
» pseudo-randomly fixed three variables to represent the target phenotype

» pseudo-randomly selected up to 50 perturbable variables

Baseline
ASP BDD ADF SAT!
Clingo AEON k++ADF GANAK
ApproxASP ApproxMC

Experimental Settings: 8 GB memory limit and 5000 seconds timeout

1#SAT-based techniques can only be used for fixed points counting.
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Results of Counting FIXs

AEON ADF clingo GANAK ApproxMC ApproxASP

C-FIX-1 247 217 227 317 420 413
C-FIX-2 252 - 236 333 438 429
C-FIX-3 248 - 99 286 600 645

] é i >3
/ jo
Wy ;7
Z Z
S/ J
£ - /
[/ I
0 ,__éi} - A
C-FIX-1 C-FIX-2

Slide 17/ 20



Results of Counting MTSs

AEON ADF clingo ApproxASP
C-MTS-1 179 200 211 364
C-MTs-2 231 - 308 464
C-MTS-3 148 - 84 644
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A Case Study of Interferon 1 model

» Interferon 1: Biochemical species closely tied to immune response present in
T-cells.
» The BN model has 121 variables and 55 inputs — not regulated by others.
» The model defines three phenotype variables,
> ISG (expression antiviral response phenotype)
»> PCK (Proinflammatory cytokine expression inflammation)
» IFN (Type 1 IFN response)
» We selected 20 variables of the model as potential perturbation targets, which
results in 320 admissible perturbations in our BN.

P Key idea: robustness o #AS(P), x

v
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A Case
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Study of Interferon 1 model

Interferon 1: Biochemical species closely tied to immune response present in

T-cells.

The BN model has 121 variables and 55 inputs — not regulated by others.

The model defines three phenotype variables,

> ISG (expression antiviral response phenotype)
»> PCK (Proinflammatory cytokine expression inflammation)
» IFN (Type 1 IFN response)
We selected 20 variables of the model as potential perturbation targets, which
results in 320 admissible perturbations in our BN.

P Key idea: robustness o #AS(P), x

ISG | PCK | IFN C-MTS-3 Robustness (r) | Robustness

1 - - 3486784401 1.000 »
- 1 - 2114072298 0.606 N2
- - 1 2313362673 0.663

0 0 0 478296900 0.137 N2
0 1 0 478296900 0.137 N2
1 0 1 1096362783 0.314

1 1 1 1409735826 0.404 1
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Conclusion

» We address the problem of counting minimal trap spaces and fixed points in BNs.

» We propose novel methods for determining trap space and fixed point counts
using approximate model counting, thus entirely avoiding costly enumeration.

» We address three biologically motivated problems:

» general counting
> counting occurrences of a known phenotype
» counting of perturbations that ensure the emergence of a known phenotype

» Approximate counting substantially improves the feasibility of counting in BNs.
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