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Boolean Network (BN)

A Boolean Network N = (V ,F ), where

I V = {v1, . . . , vn} is a set of nodes

I F = {f1, . . . , fn} is a set of associated Boolean functions

Update Scheme: At time t, node vi ∈ V can update its state by st+1(vi ) = fi (st).

I Asynchronous: exactly one node updated at each time step non-deterministically.

I Synchronous: all nodes updated at each time step.

V = {a, b}{
fa = (a ∧ ¬b)

fb = a
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Trap spaces in BN

A sub-space is a map m : V 7→ {0, 1, ?} representing a state hypercube.

I 0? ∼ {00, 01}
I 11 ∼ {11}
I ?? ∼ {00, 01, 10, 11}

where, ? denotes the variable is free; otherwise the variable is fixed.

I Trap Space: A sub-space that is a set of states from which the system cannot
escape once entered.

I Minimal Trap Space (MTS): A trap space that has no other smaller trap spaces.

I Fixed Point (FIX): A special case of minimal trap space where no variable is free.
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where, ? denotes the variable is free; otherwise the variable is fixed.

I Trap Space: A sub-space that is a set of states from which the system cannot
escape once entered.

I Minimal Trap Space (MTS): A trap space that has no other smaller trap spaces.

I Fixed Point (FIX): A special case of minimal trap space where no variable is free.

Notably, trap spaces are independent of the employed update scheme [KBS2015].
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Some Definitions

Definition (Phenotype)

A trait is a statement of form: (v ←→ e), where v ∈ Var(N ) and e ∈ {0, 1, ?}.
A phenotype β is the conjunction of a set of traits, β ≡

∧
i (vi ←→ ei ).

Definition (Perturbation)

A perturbation σ over a set of perturbable variables X ⊆ Var(N ) is a mapping as
X 7→ {0, 1, ?}. For each variable v ∈ Var(N ),

σ(v) =


fv = 0 knockout

fv = 1 over-expression

fv = ? fv is unchanged

Definition (Perturbed BN)

Given a perturbation σ, the perturbed Boolean Network Nσ = (V σ ,Fσ) where
V σ = V and for each variable v ∈ N ,

f σv =

{
σ(v) if v ∈ X and σ(v) 6= ?

fv otherwise
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Answer Set Programming (ASP)

I Roots in logic programming and non-monotonic reasoning

I A rule-based language for problem encoding

h1∨ ... h`
head

← b1, ... ,bk ,∼ bk+1, ... ,∼ bk+m.
body

I An ASP program P ≡ set of rules.

I Definitions:

I Program P is called disjunctive if ∃r ∈ P s.t. |Head(r)|> 1 [EG95]
I Otherwise, program P is called normal

I The model of P is an answer set (denoted as AS(P)).

I Answer set programming has close relationship with Systems Biology

I Existing and efficient trap spaces enumeration techniques rely on ASP and ASP
solvers [KBS2015;PKC+2020;TBH+2023;TBS2023;TBP+2024].
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New Challenges: Quantitative Reasoning on BN

, Existing works focus on qualititive reasoning on BN (e.g., finding a trap space).

� Interesting and biologically motivated research directions: Quantitative Reasoning

How to do
Probabilistic

Reasoning on BN?

How is the
likelihood of a

phenotype in a BN?

How to quantify
Robustness of
a phenotype?
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Our Contributions

We propose six meaningful counting problems on Boolean Networks.

1st problems 2nd problems 3rd problems

Input BN N BN N ,
phenotype β

BN N , phenotype β,
perturbables X

FIXs
Formulation

C-FIX-1:
#FIXs of N

C-FIX-2:
#FIXs of N ,
satisfying β

C-FIX-3:
#FIXs of N , satisfying
β, over perturbed BNs

MTSs
Formulation

C-MTS-1:
#MTSs of N

C-MTS-2:
#MTSs of N ,
satisfying β

C-MTS-3:
#MTSs of N ,
satisfying β, over
perturbed BNs

Applications probabilistic
reasoning on BN

quantifying
emergence of
phenotype

phenotype robustness
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Counting Methodologies: from high-level

P = ?← ?
?← ?
?← ?

∆ = {. . .}

#AS(P)↓∆

Given N , β,X

I The counting problems C-FIX-3 and C-MTS-3 reduce to projected answer set
counting and the projection set ∆ is derived from perturbable variables X .

I For remaining counting problems, the projection set ∆ is trivial.
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Counting Formulation for C-FIX-3 and C-MTS-3

1. Capture all
FIXs/MTSs

2. Satisfy
Phenotype

3. Capture all
FIXs/MTSs over

perturbations
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Capture all FIXs/MTSs (1/3)

I C-FIX-1: fASP [TBS2023] captures the fixed points
the answer sets of the program one-to-one correspond with the FIXs of N

I C-MTS-1: tsconj [TBP+2024] captures the minimal trap spaces
the answer sets of the program one-to-one correspond with the MTSs of N

Ò ASP Encodings

P =

{
fASP(N ) for all FIXs

tsconj(N ) for all MTSs

Õ Some Notes on tsconj and fASP

I for each variable v ∈ Var(N ), there are two atoms p(v) and n(v)

I The relationship between answer set A of the program P and sub-space m of N
is that for every variable v ∈ Var(N ):

I m(v) = 1 if and only if p(v) ∈ A and n(v) 6∈ A
I m(v) = 0 if and only if p(v) 6∈ A and n(v) ∈ A
I m(v) = ? if and only if p(v) ∈ A and n(v) ∈ A
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Counting Formulation for C-FIX-3 and C-MTS-3

1. Capture all

FIXs/MTSs
2. Satisfy
Phenotype

3. Capture all
FIXs/MTSs over

perturbations
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Satisfy Phenotype (2/3)

Ì A phenotype β ≡
∧

i (vi ←→ ei ), where ei ∈ {0, 1, ?}.

Data: Phenotype β
Result: ASP Program Q
Algorithm PhenToASP(β)

Q ← ∅
foreach (v ←→ e) ∈ β do

if e = 1 then
Q.add(⊥ ← ∼p(v), ⊥ ← n(v))

else if e = 0 then
Q.add(⊥ ← p(v), ⊥ ← ∼n(v))

else if e = ? then
Q.add(⊥ ← ∼p(v), ⊥ ← ∼n(v))

end
return Q

Ò ASP Encodings

P = PhenToASP(β) ∧
{

fASP(N ) for FIXs satisfying β

tsconj(N ) for MTSs satisfying β
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Counting Formulation for C-FIX-3 and C-MTS-3

1. Capture all

MTSs/FIXs

2. Satisfy Phe-

notype

3. Capture
MTSs/FIXs over

perturbations
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Counting over Perturbations (3/3)

Definition (New BN)

Given a BN N and a set of perturbable variables X , we construct a new BN N such
that for every v ∈ Var(f ), if v ∈ Var(f ) \ X , then the variable v ∈ Var(N ) and,

fv = fv

if v ∈ X , then three variables v , vk , vo ∈ Var(N ) and

fv = ¬vk ∧ (vo ∨ fv ),

fvk = vk ,

fvo = vo ∧ ¬vk .

vk vo fv Interpretation
1 0 0 knockout perturbation
0 1 1 over-expression perturbation
0 0 fv v is unperturbed

1 1 - infeasible due to fvo = vo ∧ ¬vk
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Counting Formulation of 3rd Problems

P = ?← ?
?← ?
?← ?

∆ = {. . .}

#AS(P)↓∆

Given N , β,X

Ò ASP Encodings

P = PhenToASP(β) ∧
{

fASP(N ) for C-FIX-3

tsconj(N ) for C-MTS-3
, N is the new BN

∆ =
⋃
v∈X
{vk , vo}
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Experimental Evaluation

Benchmark
Total 645 Boolean Networks from BN literature [TBP+2024,TBS2023]:

I 245 real-world

I 400 randomly generated

with up to 5,000 variables.

Phenotype and Perturbables Variables Selection

I pseudo-randomly fixed three variables to represent the target phenotype

I pseudo-randomly selected up to 50 perturbable variables

Baseline

ASP BDD ADF SAT1

Clingo AEON k++ADF GANAK
ApproxASP ApproxMC

Experimental Settings: 8 GB memory limit and 5000 seconds timeout

1#SAT-based techniques can only be used for fixed points counting.
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Results of Counting FIXs

AEON ADF clingo GANAK ApproxMC ApproxASP

C-FIX-1 247 217 227 317 420 413

C-FIX-2 252 - 236 333 438 429

C-FIX-3 248 - 99 286 600 645
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Results of Counting MTSs

AEON ADF clingo ApproxASP

C-MTS-1 179 200 211 364

C-MTS-2 231 - 308 464

C-MTS-3 148 - 84 644
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A Case Study of Interferon 1 model

I Interferon 1: Biochemical species closely tied to immune response present in
T-cells.

I The BN model has 121 variables and 55 inputs — not regulated by others.

I The model defines three phenotype variables,

I ISG (expression antiviral response phenotype)
I PCK (Proinflammatory cytokine expression inflammation)
I IFN (Type 1 IFN response)

I We selected 20 variables of the model as potential perturbation targets, which
results in 320 admissible perturbations in our BN.

I ö Key idea: robustness ∝ #AS(P)↓X

ISG PCK IFN C-MTS-3 Robustness (r) Robustness
1 - - 3486784401 1.000 (
- 1 - 2114072298 0.606 "
- - 1 2313362673 0.663

0 0 0 478296900 0.137 "
0 1 0 478296900 0.137 "
1 0 1 1096362783 0.314
1 1 1 1409735826 0.404 (
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Conclusion

I We address the problem of counting minimal trap spaces and fixed points in BNs.

I We propose novel methods for determining trap space and fixed point counts
using approximate model counting, thus entirely avoiding costly enumeration.

I We address three biologically motivated problems:

I general counting
I counting occurrences of a known phenotype
I counting of perturbations that ensure the emergence of a known phenotype

I Approximate counting substantially improves the feasibility of counting in BNs.

https://github.com/meelgroup/bn-counting
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