Scalable Counting of Minimal Trap Spaces and Fixed Points in Boolean Networks

Mohimenul Kabir, Van-Giang Trinh, Samuel Pastva, Kuldeep S. Meel

Boolean Network (BN)

A Boolean Network $\mathcal{N} = (V, F)$, where

- $ightharpoonup V = \{v_1, \dots, v_n\}$ is a set of nodes
- $ightharpoonup F = \{f_1, \dots, f_n\}$ is a set of associated Boolean functions

Boolean Network (BN)

A Boolean Network $\mathcal{N} = (V, F)$, where

- $V = \{v_1, \dots, v_n\}$ is a set of nodes
- $ightharpoonup F = \{f_1, \dots, f_n\}$ is a set of associated Boolean functions

Update Scheme: At time t, node $v_i \in V$ can update its state by $s_{t+1}(v_i) = f_i(s_t)$.

- Asynchronous: exactly one node updated at each time step non-deterministically.
- Synchronous: all nodes updated at each time step.

Boolean Network (BN)

A Boolean Network $\mathcal{N} = (V, F)$, where

- $V = \{v_1, \dots, v_n\}$ is a set of nodes
- $ightharpoonup F = \{f_1, \dots, f_n\}$ is a set of associated Boolean functions

Update Scheme: At time t, node $v_i \in V$ can update its state by $s_{t+1}(v_i) = f_i(s_t)$.

- Asynchronous: exactly one node updated at each time step non-deterministically.
- Synchronous: all nodes updated at each time step.

$$V = \{a, b\}$$

$$\begin{cases} f_a = (a \land \neg b) \\ f_b = a \end{cases}$$

$$\begin{cases} 10 \longrightarrow 1 \end{cases}$$
Boolean network \mathcal{N}

$$STG(\mathcal{N})$$

Trap spaces in BN

A sub-space is a map $m: V \mapsto \{0, 1, \star\}$ representing a state hypercube.

- ▶ $0 \star \sim \{00, 01\}$
- **▶** 11 ~ {11}
- \blacktriangleright ** $\sim \{00, 01, 10, 11\}$

where, \star denotes the variable is *free*; otherwise the variable is *fixed*.

Trap spaces in BN

A sub-space is a map $m:V\mapsto\{0,1,\star\}$ representing a state hypercube.

- \triangleright 0* \sim {00,01}
- ► 11 ~ {11}
- \blacktriangleright ** $\sim \{00, 01, 10, 11\}$

where, \star denotes the variable is *free*; otherwise the variable is *fixed*.

- Trap Space: A sub-space that is a set of states from which the system cannot escape once entered.
- ▶ Minimal Trap Space (MTS): A trap space that has no other smaller trap spaces.
- Fixed Point (FIX): A special case of minimal trap space where no variable is free.

Notably, trap spaces are independent of the employed update scheme [KBS2015].

Trap spaces in BN

A sub-space is a map $m: V \mapsto \{0, 1, \star\}$ representing a state hypercube.

- ▶ $0 \star \sim \{00, 01\}$
- **▶** 11 ~ {11}
- \blacktriangleright ** $\sim \{00, 01, 10, 11\}$

where, \star denotes the variable is *free*; otherwise the variable is *fixed*.

- Trap Space: A sub-space that is a set of states from which the system cannot escape once entered.
- ▶ Minimal Trap Space (MTS): A trap space that has no other smaller trap spaces.
- Fixed Point (FIX): A special case of minimal trap space where no variable is free.

$$\begin{cases} f_a = (a \land \neg b) \\ f_b = a \end{cases}$$

Boolean network ${\mathcal N}$

Some Definitions

Definition (Phenotype)

A trait is a statement of form: $(v \longleftrightarrow e)$, where $v \in \text{Var}(\mathcal{N})$ and $e \in \{0, 1, \star\}$. A phenotype β is the conjunction of a set of traits, $\beta \equiv \bigwedge_i (v_i \longleftrightarrow e_i)$.

Some Definitions

Definition (Phenotype)

A trait is a statement of form: $(v \longleftrightarrow e)$, where $v \in Var(\mathcal{N})$ and $e \in \{0, 1, \star\}$. A phenotype β is the conjunction of a set of traits, $\beta \equiv \bigwedge_i (v_i \longleftrightarrow e_i)$.

Definition (Perturbation)

A perturbation σ over a set of perturbable variables $\mathcal{X} \subseteq \text{Var}(\mathcal{N})$ is a mapping as $\mathcal{X} \mapsto \{0,1,\star\}$. For each variable $v \in \text{Var}(\mathcal{N})$,

$$\sigma(v) = egin{cases} f_v = 0 & ext{knockout} \ f_v = 1 & ext{over-expression} \ f_v = \star & f_v ext{ is unchanged} \end{cases}$$

Some Definitions

Definition (Phenotype)

A trait is a statement of form: $(v \longleftrightarrow e)$, where $v \in Var(\mathcal{N})$ and $e \in \{0, 1, \star\}$. A phenotype β is the conjunction of a set of traits, $\beta \equiv \bigwedge_i (v_i \longleftrightarrow e_i)$.

Definition (Perturbation)

A perturbation σ over a set of perturbable variables $\mathcal{X} \subseteq \text{Var}(\mathcal{N})$ is a mapping as $\mathcal{X} \mapsto \{0,1,\star\}$. For each variable $v \in \text{Var}(\mathcal{N})$,

$$\sigma(v) = egin{cases} f_v = 0 & ext{knockout} \ f_v = 1 & ext{over-expression} \ f_v = \star & f_v ext{ is unchanged} \end{cases}$$

Definition (Perturbed BN)

Given a perturbation σ , the *perturbed Boolean Network* $\mathcal{N}^{\sigma}=(V^{\sigma},F^{\sigma})$ where $V^{\sigma}=V$ and for each variable $v\in\mathcal{N}$,

$$f_v^\sigma = egin{cases} \sigma(v) & ext{if } v \in \mathcal{X} ext{ and } \sigma(v)
eq \star \\ f_v & ext{otherwise} \end{cases}$$

Answer Set Programming (ASP)

- ▶ Roots in logic programming and non-monotonic reasoning
- ► A rule-based language for problem encoding

$$\underbrace{h_1 \vee \dots h_\ell}_{\textit{head}} \leftarrow \underbrace{b_1, \dots, b_k, \sim b_{k+1}, \dots, \sim b_{k+m}.}_{\textit{body}}$$

Answer Set Programming (ASP)

- Roots in logic programming and non-monotonic reasoning
- ► A rule-based language for problem encoding

$$\frac{\textit{h}_1 \lor \dots \textit{h}_\ell}{\textit{head}} \leftarrow \underbrace{\textit{b}_1, \dots, \textit{b}_k, \sim \textit{b}_{k+1}, \dots, \sim \textit{b}_{k+m}.}_{\textit{body}}$$

- ▶ An ASP program $P \equiv$ set of rules.
- Definitions:
 - ▶ Program *P* is called *disjunctive* if $\exists r \in P$ s.t. |Head(r)| > 1 [EG95]
 - ▶ Otherwise, program *P* is called *normal*
- ▶ The model of P is an answer set (denoted as AS(P)).

Answer Set Programming (ASP)

- Roots in logic programming and non-monotonic reasoning
- ► A rule-based language for problem encoding

$$\frac{\textit{h}_1 \lor \dots \textit{h}_\ell}{\textit{head}} \leftarrow \underbrace{\textit{b}_1, \dots, \textit{b}_k, \sim \textit{b}_{k+1}, \dots, \sim \textit{b}_{k+m}.}_{\textit{body}}$$

- ▶ An ASP program $P \equiv$ set of rules.
- Definitions:
 - ▶ Program P is called *disjunctive* if $\exists r \in P$ s.t. $|\mathsf{Head}(r)| > 1$ [EG95]
 - ▶ Otherwise, program *P* is called *normal*
- ightharpoonup The model of P is an answer set (denoted as AS(P)).
- Answer set programming has close relationship with Systems Biology
- Existing and efficient trap spaces enumeration techniques rely on ASP and ASP solvers [KBS2015;PKC+2020;TBH+2023;TBS2023;TBP+2024].

▲ Existing works focus on qualititive reasoning on BN (e.g., finding a trap space).

- ▲ Existing works focus on qualititive reasoning on BN (e.g., finding a trap space).
- Interesting and biologically motivated research directions: Quantitative Reasoning

How to do Probabilistic Reasoning on BN?

- ▲ Existing works focus on qualititive reasoning on BN (e.g., finding a trap space).
- Interesting and biologically motivated research directions: Quantitative Reasoning

How to do Probabilistic Reasoning on BN? How is the likelihood of a phenotype in a BN?

- ▲ Existing works focus on qualititive reasoning on BN (e.g., finding a trap space).
- Interesting and biologically motivated research directions: Quantitative Reasoning

How to do Probabilistic Reasoning on BN? How is the likelihood of a phenotype in a BN?

How to quantify Robustness of a phenotype?

	1st problems	2nd problems	3rd problems
Input	BN ${\mathcal N}$	BN ${\cal N},$ phenotype eta	BN \mathcal{N} , phenotype β , perturbables \mathcal{X}

	1st problems	2nd problems	3rd problems
Input	BN ${\mathcal N}$	BN ${\cal N},$ phenotype eta	BN \mathcal{N} , phenotype eta , perturbables \mathcal{X}
FIXs Formulation	C-FIX-1: #FIXs of N	C-FIX-2: #FIXs of \mathcal{N} , satisfying β	C-FIX-3: #FIXs of \mathcal{N} , satisfying β , over perturbed BNs

	1st problems	2nd problems	3rd problems
Input	BN ${\mathcal N}$	BN ${\cal N}$, phenotype eta	BN \mathcal{N} , phenotype eta , perturbables \mathcal{X}
FIXs Formulation	C-FIX-1: #FIXs of $\mathcal N$	C-FIX-2: #FIXs of \mathcal{N} , satisfying β	C-FIX-3: #FIXs of \mathcal{N} , satisfying β , over perturbed BNs
MTSs Formulation	C-MTS-1: #MTSs of N	C-MTS-2: #MTSs of \mathcal{N} , satisfying β	C-MTS-3: #MTSs of \mathcal{N} , satisfying β , over perturbed BNs

	1st problems	2nd problems	3rd problems
Input	BN ${\mathcal N}$	BN \mathcal{N} , phenotype eta	BN \mathcal{N} , phenotype eta , perturbables \mathcal{X}
FIXs Formulation	C-FIX-1: #FIXs of $\mathcal N$	C-FIX-2: #FIXs of \mathcal{N} , satisfying β	C-FIX-3: #FIXs of \mathcal{N} , satisfying β , over perturbed BNs
MTSs Formulation	C-MTS-1: #MTSs of N	C-MTS-2: #MTSs of \mathcal{N} , satisfying β	C-MTS-3: #MTSs of \mathcal{N} , satisfying β , over perturbed BNs
Applications	probabilistic reasoning on BN	quantifying emergence of phenotype	phenotype robustness

Counting Methodologies: from high-level

- ▶ The counting problems C-FIX-3 and C-MTS-3 reduce to *projected* answer set counting and the projection set Δ is derived from perturbable variables \mathcal{X} .
- ightharpoonup For remaining counting problems, the projection set Δ is trivial.

Counting Formulation for C-FIX-3 and C-MTS-3

1. Capture all FIXs/MTSs

2. Satisfy Phenotype

3. Capture all FIXs/MTSs over perturbations

► C-FIX-1: fASP [TBS2023] captures the fixed points the answer sets of the program one-to-one correspond with the FIXs of N

- ▶ C-FIX-1: fASP [TBS2023] captures the fixed points the answer sets of the program one-to-one correspond with the FIXs of ${\cal N}$
- ▶ C-MTS-1: tsconj [TBP $^+$ 2024] captures the minimal trap spaces the answer sets of the program one-to-one correspond with the MTSs of $\mathcal N$

- ▶ C-FIX-1: fASP [TBS2023] captures the fixed points the answer sets of the program one-to-one correspond with the FIXs of ${\cal N}$
- ▶ C-MTS-1: tsconj [TBP $^+$ 2024] captures the minimal trap spaces the answer sets of the program one-to-one correspond with the MTSs of $\mathcal N$

$$\mathcal{P} = \begin{cases} \mathsf{fASP}(\mathcal{N}) & \mathsf{for all FIXs} \\ \mathsf{tsconj}(\mathcal{N}) & \mathsf{for all MTSs} \end{cases}$$

- ► C-FIX-1: fASP [TBS2023] captures the fixed points the answer sets of the program one-to-one correspond with the FIXs of N
- ▶ C-MTS-1: tsconj [TBP $^+$ 2024] captures the minimal trap spaces the answer sets of the program one-to-one correspond with the MTSs of $\mathcal N$

$$\mathcal{P} = \begin{cases} \mathsf{fASP}(\mathcal{N}) & \mathsf{for all FIXs} \\ \mathsf{tsconj}(\mathcal{N}) & \mathsf{for all MTSs} \end{cases}$$

- Some Notes on tsconj and fASP
 - ▶ for each variable $v \in Var(\mathcal{N})$, there are two atoms p(v) and n(v)

- ▶ C-FIX-1: fASP [TBS2023] captures the fixed points the answer sets of the program one-to-one correspond with the FIXs of ${\cal N}$
- ▶ C-MTS-1: tsconj [TBP $^+$ 2024] captures the minimal trap spaces the answer sets of the program one-to-one correspond with the MTSs of $\mathcal N$

$$\mathcal{P} = \begin{cases} \mathsf{fASP}(\mathcal{N}) & \mathsf{for all FIXs} \\ \mathsf{tsconj}(\mathcal{N}) & \mathsf{for all MTSs} \end{cases}$$

- Some Notes on tsconj and fASP
 - ▶ for each variable $v \in Var(\mathcal{N})$, there are two atoms p(v) and n(v)
 - ▶ The relationship between answer set A of the program \mathcal{P} and sub-space m of \mathcal{N} is that for every variable $v \in \text{Var}(\mathcal{N})$:
 - ▶ m(v) = 1 if and only if $p(v) \in A$ and $n(v) \notin A$
 - proof m(v) = 0 if and only if $p(v) \not\in A$ and $n(v) \in A$
 - ▶ $m(v) = \star$ if and only if $p(v) \in A$ and $n(v) \in A$

Counting Formulation for C-FIX-3 and C-MTS-3

Capture all FIXs/MTSs ✓

2. Satisfy Phenotype

Capture all FIXs/MTSs over perturbations

Satisfy Phenotype (2/3)

```
Data: Phenotype \beta
Result: ASP Program Q
Algorithm PhenToASP(\beta)
    Q \leftarrow \emptyset
    foreach (v \longleftrightarrow e) \in \beta do
    if e = 1 then
      | Q.add(\bot \leftarrow \sim p(v), \bot \leftarrow n(v))
     else if e = 0 then
 | Q.add(\bot \leftarrow p(v), \quad \bot \leftarrow \sim n(v)) 
      else if e = \star then
 | Q.add(\bot \leftarrow \sim p(v), \qquad \bot \leftarrow \sim n(v)) 
    end
    return Q
```

Satisfy Phenotype (2/3)

```
Data: Phenotype \beta \equiv \bigwedge_i (v_i \longleftrightarrow e_i), where e_i \in \{0, 1, \star\}.

Data: Phenotype \beta

Result: ASP Program Q

Algorithm PhenToASP(\beta)

Q \leftarrow \emptyset

foreach (v \longleftrightarrow e) \in \beta do

if e = 1 then

|Q.add(\bot \leftarrow \sim p(v), \bot \leftarrow n(v))

else if e = 0 then

|Q.add(\bot \leftarrow p(v), \bot \leftarrow \sim n(v))

else if e = \star then

|Q.add(\bot \leftarrow \sim p(v), \bot \leftarrow \sim n(v))

end
```

ASP Encodings

return Q

$$\mathcal{P} = \mathsf{PhenToASP}(\beta) \land \begin{cases} \mathsf{fASP}(\mathcal{N}) & \text{for FIXs satisfying } \beta \\ \mathsf{tsconj}(\mathcal{N}) & \text{for MTSs satisfying } \beta \end{cases}$$

Counting Formulation for C-FIX-3 and C-MTS-3

Capture all MTSs/FIXs ✓

2. Satisfy Phenotype ✓

Capture MTSs/FIXs over perturbations

Counting over Perturbations (3/3)

Definition (New BN)

Given a BN $\mathcal N$ and a set of perturbable variables $\mathcal X$, we construct a new BN $\overline{\mathcal N}$ such that for every $v\in {\sf Var}(f)$, if $v\in {\sf Var}(f)\setminus \mathcal X$, then the variable $v\in {\sf Var}(\overline{\mathcal N})$ and,

$$\overline{f_{v}} = f_{v}$$

if $v \in \mathcal{X}$, then three variables $v, v^k, v^o \in \text{Var}(\overline{\mathcal{N}})$ and

$$\overline{f_{v}} = \neg v^{k} \wedge (v^{o} \vee f_{v}),
\overline{f_{v^{k}}} = v^{k},
\overline{f_{v^{o}}} = v^{o} \wedge \neg v^{k}.$$

Counting over Perturbations (3/3)

Definition (New BN)

Given a BN $\mathcal N$ and a set of perturbable variables $\mathcal X$, we construct a new BN $\overline{\mathcal N}$ such that for every $v\in {\sf Var}(f)$, if $v\in {\sf Var}(f)\setminus \mathcal X$, then the variable $v\in {\sf Var}(\overline{\mathcal N})$ and,

$$\overline{f_{V}} = f_{V}$$

if $v \in \mathcal{X}$, then three variables $v, v^k, v^o \in \mathsf{Var}(\overline{\mathcal{N}})$ and

$$\begin{split} \overline{f_{v}} &= \neg v^{k} \wedge (v^{o} \vee f_{v}), \\ \overline{f_{v^{k}}} &= v^{k}, \\ \overline{f_{v^{o}}} &= v^{o} \wedge \neg v^{k}. \end{split}$$

v^k	v°	f_{V}	Interpretation
1	0	0	knockout perturbation
0	1	1	over-expression perturbation
0	0	f_{ν}	v is unperturbed
1	1	-	infeasible due to $\overline{f_{v^o}} = v^o \wedge eg v^k$

Counting Formulation of 3rd Problems

$$\begin{split} \mathcal{P} &= \mathsf{PhenToASP}(\beta) \wedge \begin{cases} \mathsf{fASP}(\overline{\mathcal{N}}) & \mathsf{for C-FIX-3} \\ \mathsf{tsconj}(\overline{\mathcal{N}}) & \mathsf{for C-MTS-3} \end{cases}, \qquad \overline{\mathcal{N}} \; \mathsf{is the new BN} \\ \Delta &= \bigcup_{v \in \mathcal{X}} \{ v^k, v^o \} \end{split}$$

Experimental Evaluation

Benchmark

Total 645 Boolean Networks from BN literature [TBP+2024,TBS2023]:

- 245 real-world
- ▶ 400 randomly generated

with up to 5,000 variables.

Phenotype and Perturbables Variables Selection

- pseudo-randomly fixed three variables to represent the target phenotype
- pseudo-randomly selected up to 50 perturbable variables

Baseline

ASP	BDD	ADF	SAT ¹
Clingo ApproxASP	AEON	k++ADF	GANAK ApproxMC

Experimental Settings: 8 GB memory limit and 5000 seconds timeout

¹#SAT-based techniques can only be used for fixed points counting.

Results of Counting FIXs

	AEON	ADF	clingo	GANAK	ApproxMC	ApproxASP
C-FIX-1	247	217	227	317	420	413
C-FIX-2	252	-	236	333	438	429
C-FIX-3	248	-	99	286	600	645

Results of Counting MTSs

	AEON	ADF	clingo	ApproxASP
C-MTS-1	179	200	211	364
C-MTS-2	231	-	308	464
C-MTS-3	148	-	84	644

A Case Study of Interferon 1 model

- Interferon 1: Biochemical species closely tied to immune response present in T-cells.
- ▶ The BN model has 121 variables and 55 inputs not regulated by others.
- ▶ The model defines three phenotype variables,
 - ► ISG (expression antiviral response phenotype)
 - ► PCK (Proinflammatory cytokine expression inflammation)
 - ► IFN (Type 1 IFN response)
- We selected 20 variables of the model as potential perturbation targets, which results in 3²⁰ admissible perturbations in our BN.
- ▶ \nearrow Key idea: robustness $\propto \#AS(P)_{\downarrow \mathcal{X}}$

A Case Study of Interferon 1 model

- Interferon 1: Biochemical species closely tied to immune response present in T-cells.
- ▶ The BN model has 121 variables and 55 inputs not regulated by others.
- The model defines three phenotype variables,
 - ► ISG (expression antiviral response phenotype)
 - ► PCK (Proinflammatory cytokine expression inflammation)
 - ► IFN (Type 1 IFN response)
- We selected 20 variables of the model as potential perturbation targets, which results in 3²⁰ admissible perturbations in our BN.
- ▶ P Key idea: robustness $\propto \#AS(P)_{\downarrow \mathcal{X}}$

ISG	PCK	IFN	C-MTS-3	Robustness (r)	Robustness
1	-	-	3486784401	1.000	^
-	1	-	2114072298	0.606	•
	-	1	2313362673	0.663	
0	0	0	478296900	0.137	4
0	1	0	478296900	0.137	•
1	0	1	1096362783	0.314	
1	1	1	1409735826	0.404	^

Conclusion

- We address the problem of counting minimal trap spaces and fixed points in BNs.
- We propose novel methods for determining trap space and fixed point counts using approximate model counting, thus entirely avoiding costly enumeration.
- ▶ We address three biologically motivated problems:
 - general counting
 - counting occurrences of a known phenotype
 - counting of perturbations that ensure the emergence of a known phenotype
- ▶ Approximate counting substantially improves the feasibility of counting in BNs.

Conclusion

- We address the problem of counting minimal trap spaces and fixed points in BNs.
- We propose novel methods for determining trap space and fixed point counts using approximate model counting, thus entirely avoiding costly enumeration.
- ▶ We address three biologically motivated problems:
 - general counting
 - counting occurrences of a known phenotype
 - counting of perturbations that ensure the emergence of a known phenotype
- ▶ Approximate counting substantially improves the feasibility of counting in BNs.

https://github.com/meelgroup/bn-counting