Scalable Counting of Minimal Trap Spaces and Fixed Points in Boolean Networks Mohimenul Kabir, Van-Giang Trinh, Samuel Pastva, Kuldeep S. Meel # Boolean Network (BN) A Boolean Network $\mathcal{N} = (V, F)$, where - $ightharpoonup V = \{v_1, \dots, v_n\}$ is a set of nodes - $ightharpoonup F = \{f_1, \dots, f_n\}$ is a set of associated Boolean functions # Boolean Network (BN) A Boolean Network $\mathcal{N} = (V, F)$, where - $V = \{v_1, \dots, v_n\}$ is a set of nodes - $ightharpoonup F = \{f_1, \dots, f_n\}$ is a set of associated Boolean functions Update Scheme: At time t, node $v_i \in V$ can update its state by $s_{t+1}(v_i) = f_i(s_t)$. - Asynchronous: exactly one node updated at each time step non-deterministically. - Synchronous: all nodes updated at each time step. # Boolean Network (BN) A Boolean Network $\mathcal{N} = (V, F)$, where - $V = \{v_1, \dots, v_n\}$ is a set of nodes - $ightharpoonup F = \{f_1, \dots, f_n\}$ is a set of associated Boolean functions Update Scheme: At time t, node $v_i \in V$ can update its state by $s_{t+1}(v_i) = f_i(s_t)$. - Asynchronous: exactly one node updated at each time step non-deterministically. - Synchronous: all nodes updated at each time step. $$V = \{a, b\}$$ $$\begin{cases} f_a = (a \land \neg b) \\ f_b = a \end{cases}$$ $$\begin{cases} 10 \longrightarrow 1 \end{cases}$$ Boolean network \mathcal{N} $$STG(\mathcal{N})$$ # Trap spaces in BN A sub-space is a map $m: V \mapsto \{0, 1, \star\}$ representing a state hypercube. - ▶ $0 \star \sim \{00, 01\}$ - **▶** 11 ~ {11} - \blacktriangleright ** $\sim \{00, 01, 10, 11\}$ where, \star denotes the variable is *free*; otherwise the variable is *fixed*. ## Trap spaces in BN A sub-space is a map $m:V\mapsto\{0,1,\star\}$ representing a state hypercube. - \triangleright 0* \sim {00,01} - ► 11 ~ {11} - \blacktriangleright ** $\sim \{00, 01, 10, 11\}$ where, \star denotes the variable is *free*; otherwise the variable is *fixed*. - Trap Space: A sub-space that is a set of states from which the system cannot escape once entered. - ▶ Minimal Trap Space (MTS): A trap space that has no other smaller trap spaces. - Fixed Point (FIX): A special case of minimal trap space where no variable is free. Notably, trap spaces are independent of the employed update scheme [KBS2015]. ### Trap spaces in BN A sub-space is a map $m: V \mapsto \{0, 1, \star\}$ representing a state hypercube. - ▶ $0 \star \sim \{00, 01\}$ - **▶** 11 ~ {11} - \blacktriangleright ** $\sim \{00, 01, 10, 11\}$ where, \star denotes the variable is *free*; otherwise the variable is *fixed*. - Trap Space: A sub-space that is a set of states from which the system cannot escape once entered. - ▶ Minimal Trap Space (MTS): A trap space that has no other smaller trap spaces. - Fixed Point (FIX): A special case of minimal trap space where no variable is free. $$\begin{cases} f_a = (a \land \neg b) \\ f_b = a \end{cases}$$ Boolean network ${\mathcal N}$ #### Some Definitions ### Definition (Phenotype) A trait is a statement of form: $(v \longleftrightarrow e)$, where $v \in \text{Var}(\mathcal{N})$ and $e \in \{0, 1, \star\}$. A phenotype β is the conjunction of a set of traits, $\beta \equiv \bigwedge_i (v_i \longleftrightarrow e_i)$. #### Some Definitions ### Definition (Phenotype) A trait is a statement of form: $(v \longleftrightarrow e)$, where $v \in Var(\mathcal{N})$ and $e \in \{0, 1, \star\}$. A phenotype β is the conjunction of a set of traits, $\beta \equiv \bigwedge_i (v_i \longleftrightarrow e_i)$. #### Definition (Perturbation) A perturbation σ over a set of perturbable variables $\mathcal{X} \subseteq \text{Var}(\mathcal{N})$ is a mapping as $\mathcal{X} \mapsto \{0,1,\star\}$. For each variable $v \in \text{Var}(\mathcal{N})$, $$\sigma(v) = egin{cases} f_v = 0 & ext{knockout} \ f_v = 1 & ext{over-expression} \ f_v = \star & f_v ext{ is unchanged} \end{cases}$$ #### Some Definitions ### Definition (Phenotype) A trait is a statement of form: $(v \longleftrightarrow e)$, where $v \in Var(\mathcal{N})$ and $e \in \{0, 1, \star\}$. A phenotype β is the conjunction of a set of traits, $\beta \equiv \bigwedge_i (v_i \longleftrightarrow e_i)$. #### Definition (Perturbation) A perturbation σ over a set of perturbable variables $\mathcal{X} \subseteq \text{Var}(\mathcal{N})$ is a mapping as $\mathcal{X} \mapsto \{0,1,\star\}$. For each variable $v \in \text{Var}(\mathcal{N})$, $$\sigma(v) = egin{cases} f_v = 0 & ext{knockout} \ f_v = 1 & ext{over-expression} \ f_v = \star & f_v ext{ is unchanged} \end{cases}$$ ### Definition (Perturbed BN) Given a perturbation σ , the *perturbed Boolean Network* $\mathcal{N}^{\sigma}=(V^{\sigma},F^{\sigma})$ where $V^{\sigma}=V$ and for each variable $v\in\mathcal{N}$, $$f_v^\sigma = egin{cases} \sigma(v) & ext{if } v \in \mathcal{X} ext{ and } \sigma(v) eq \star \\ f_v & ext{otherwise} \end{cases}$$ # Answer Set Programming (ASP) - ▶ Roots in logic programming and non-monotonic reasoning - ► A rule-based language for problem encoding $$\underbrace{h_1 \vee \dots h_\ell}_{\textit{head}} \leftarrow \underbrace{b_1, \dots, b_k, \sim b_{k+1}, \dots, \sim b_{k+m}.}_{\textit{body}}$$ # Answer Set Programming (ASP) - Roots in logic programming and non-monotonic reasoning - ► A rule-based language for problem encoding $$\frac{\textit{h}_1 \lor \dots \textit{h}_\ell}{\textit{head}} \leftarrow \underbrace{\textit{b}_1, \dots, \textit{b}_k, \sim \textit{b}_{k+1}, \dots, \sim \textit{b}_{k+m}.}_{\textit{body}}$$ - ▶ An ASP program $P \equiv$ set of rules. - Definitions: - ▶ Program *P* is called *disjunctive* if $\exists r \in P$ s.t. |Head(r)| > 1 [EG95] - ▶ Otherwise, program *P* is called *normal* - ▶ The model of P is an answer set (denoted as AS(P)). # Answer Set Programming (ASP) - Roots in logic programming and non-monotonic reasoning - ► A rule-based language for problem encoding $$\frac{\textit{h}_1 \lor \dots \textit{h}_\ell}{\textit{head}} \leftarrow \underbrace{\textit{b}_1, \dots, \textit{b}_k, \sim \textit{b}_{k+1}, \dots, \sim \textit{b}_{k+m}.}_{\textit{body}}$$ - ▶ An ASP program $P \equiv$ set of rules. - Definitions: - ▶ Program P is called *disjunctive* if $\exists r \in P$ s.t. $|\mathsf{Head}(r)| > 1$ [EG95] - ▶ Otherwise, program *P* is called *normal* - ightharpoonup The model of P is an answer set (denoted as AS(P)). - Answer set programming has close relationship with Systems Biology - Existing and efficient trap spaces enumeration techniques rely on ASP and ASP solvers [KBS2015;PKC+2020;TBH+2023;TBS2023;TBP+2024]. ▲ Existing works focus on qualititive reasoning on BN (e.g., finding a trap space). - ▲ Existing works focus on qualititive reasoning on BN (e.g., finding a trap space). - Interesting and biologically motivated research directions: Quantitative Reasoning How to do Probabilistic Reasoning on BN? - ▲ Existing works focus on qualititive reasoning on BN (e.g., finding a trap space). - Interesting and biologically motivated research directions: Quantitative Reasoning How to do Probabilistic Reasoning on BN? How is the likelihood of a phenotype in a BN? - ▲ Existing works focus on qualititive reasoning on BN (e.g., finding a trap space). - Interesting and biologically motivated research directions: Quantitative Reasoning How to do Probabilistic Reasoning on BN? How is the likelihood of a phenotype in a BN? How to quantify Robustness of a phenotype? | | 1st problems | 2nd problems | 3rd problems | |-------|-------------------|--------------------------------|---| | Input | BN ${\mathcal N}$ | BN ${\cal N},$ phenotype eta | BN \mathcal{N} , phenotype β , perturbables \mathcal{X} | | | 1st problems | 2nd problems | 3rd problems | |---------------------|------------------------|--|--| | Input | BN ${\mathcal N}$ | BN ${\cal N},$ phenotype eta | BN \mathcal{N} , phenotype eta , perturbables \mathcal{X} | | FIXs
Formulation | C-FIX-1:
#FIXs of N | C-FIX-2: #FIXs of \mathcal{N} , satisfying β | C-FIX-3:
#FIXs of \mathcal{N} , satisfying β , over perturbed BNs | | | 1st problems | 2nd problems | 3rd problems | |---------------------|--------------------------------|--|--| | Input | BN ${\mathcal N}$ | BN ${\cal N}$, phenotype eta | BN \mathcal{N} , phenotype eta , perturbables \mathcal{X} | | FIXs
Formulation | C-FIX-1: #FIXs of $\mathcal N$ | C-FIX-2: #FIXs of \mathcal{N} , satisfying β | C-FIX-3:
#FIXs of \mathcal{N} , satisfying β , over perturbed BNs | | MTSs
Formulation | C-MTS-1:
#MTSs of N | C-MTS-2: #MTSs of \mathcal{N} , satisfying β | C-MTS-3:
#MTSs of \mathcal{N} ,
satisfying β , over
perturbed BNs | | | 1st problems | 2nd problems | 3rd problems | |---------------------|----------------------------------|--|--| | Input | BN ${\mathcal N}$ | BN \mathcal{N} , phenotype eta | BN \mathcal{N} , phenotype eta , perturbables \mathcal{X} | | FIXs
Formulation | C-FIX-1: #FIXs of $\mathcal N$ | C-FIX-2: #FIXs of \mathcal{N} , satisfying β | C-FIX-3:
#FIXs of \mathcal{N} , satisfying β , over perturbed BNs | | MTSs
Formulation | C-MTS-1:
#MTSs of N | C-MTS-2: #MTSs of \mathcal{N} , satisfying β | C-MTS-3: #MTSs of \mathcal{N} , satisfying β , over perturbed BNs | | Applications | probabilistic
reasoning on BN | quantifying
emergence of
phenotype | phenotype robustness | # Counting Methodologies: from high-level - ▶ The counting problems C-FIX-3 and C-MTS-3 reduce to *projected* answer set counting and the projection set Δ is derived from perturbable variables \mathcal{X} . - ightharpoonup For remaining counting problems, the projection set Δ is trivial. # Counting Formulation for C-FIX-3 and C-MTS-3 1. Capture all FIXs/MTSs 2. Satisfy Phenotype 3. Capture all FIXs/MTSs over perturbations ► C-FIX-1: fASP [TBS2023] captures the fixed points the answer sets of the program one-to-one correspond with the FIXs of N - ▶ C-FIX-1: fASP [TBS2023] captures the fixed points the answer sets of the program one-to-one correspond with the FIXs of ${\cal N}$ - ▶ C-MTS-1: tsconj [TBP $^+$ 2024] captures the minimal trap spaces the answer sets of the program one-to-one correspond with the MTSs of $\mathcal N$ - ▶ C-FIX-1: fASP [TBS2023] captures the fixed points the answer sets of the program one-to-one correspond with the FIXs of ${\cal N}$ - ▶ C-MTS-1: tsconj [TBP $^+$ 2024] captures the minimal trap spaces the answer sets of the program one-to-one correspond with the MTSs of $\mathcal N$ $$\mathcal{P} = \begin{cases} \mathsf{fASP}(\mathcal{N}) & \mathsf{for all FIXs} \\ \mathsf{tsconj}(\mathcal{N}) & \mathsf{for all MTSs} \end{cases}$$ - ► C-FIX-1: fASP [TBS2023] captures the fixed points the answer sets of the program one-to-one correspond with the FIXs of N - ▶ C-MTS-1: tsconj [TBP $^+$ 2024] captures the minimal trap spaces the answer sets of the program one-to-one correspond with the MTSs of $\mathcal N$ $$\mathcal{P} = \begin{cases} \mathsf{fASP}(\mathcal{N}) & \mathsf{for all FIXs} \\ \mathsf{tsconj}(\mathcal{N}) & \mathsf{for all MTSs} \end{cases}$$ - Some Notes on tsconj and fASP - ▶ for each variable $v \in Var(\mathcal{N})$, there are two atoms p(v) and n(v) - ▶ C-FIX-1: fASP [TBS2023] captures the fixed points the answer sets of the program one-to-one correspond with the FIXs of ${\cal N}$ - ▶ C-MTS-1: tsconj [TBP $^+$ 2024] captures the minimal trap spaces the answer sets of the program one-to-one correspond with the MTSs of $\mathcal N$ $$\mathcal{P} = \begin{cases} \mathsf{fASP}(\mathcal{N}) & \mathsf{for all FIXs} \\ \mathsf{tsconj}(\mathcal{N}) & \mathsf{for all MTSs} \end{cases}$$ - Some Notes on tsconj and fASP - ▶ for each variable $v \in Var(\mathcal{N})$, there are two atoms p(v) and n(v) - ▶ The relationship between answer set A of the program \mathcal{P} and sub-space m of \mathcal{N} is that for every variable $v \in \text{Var}(\mathcal{N})$: - ▶ m(v) = 1 if and only if $p(v) \in A$ and $n(v) \notin A$ - proof m(v) = 0 if and only if $p(v) \not\in A$ and $n(v) \in A$ - ▶ $m(v) = \star$ if and only if $p(v) \in A$ and $n(v) \in A$ ## Counting Formulation for C-FIX-3 and C-MTS-3 Capture all FIXs/MTSs ✓ 2. Satisfy Phenotype Capture all FIXs/MTSs over perturbations # Satisfy Phenotype (2/3) ``` Data: Phenotype \beta Result: ASP Program Q Algorithm PhenToASP(\beta) Q \leftarrow \emptyset foreach (v \longleftrightarrow e) \in \beta do if e = 1 then | Q.add(\bot \leftarrow \sim p(v), \bot \leftarrow n(v)) else if e = 0 then | Q.add(\bot \leftarrow p(v), \quad \bot \leftarrow \sim n(v)) else if e = \star then | Q.add(\bot \leftarrow \sim p(v), \qquad \bot \leftarrow \sim n(v)) end return Q ``` # Satisfy Phenotype (2/3) ``` Data: Phenotype \beta \equiv \bigwedge_i (v_i \longleftrightarrow e_i), where e_i \in \{0, 1, \star\}. Data: Phenotype \beta Result: ASP Program Q Algorithm PhenToASP(\beta) Q \leftarrow \emptyset foreach (v \longleftrightarrow e) \in \beta do if e = 1 then |Q.add(\bot \leftarrow \sim p(v), \bot \leftarrow n(v)) else if e = 0 then |Q.add(\bot \leftarrow p(v), \bot \leftarrow \sim n(v)) else if e = \star then |Q.add(\bot \leftarrow \sim p(v), \bot \leftarrow \sim n(v)) end ``` #### ASP Encodings return Q $$\mathcal{P} = \mathsf{PhenToASP}(\beta) \land \begin{cases} \mathsf{fASP}(\mathcal{N}) & \text{for FIXs satisfying } \beta \\ \mathsf{tsconj}(\mathcal{N}) & \text{for MTSs satisfying } \beta \end{cases}$$ # Counting Formulation for C-FIX-3 and C-MTS-3 Capture all MTSs/FIXs ✓ 2. Satisfy Phenotype ✓ Capture MTSs/FIXs over perturbations # Counting over Perturbations (3/3) ### Definition (New BN) Given a BN $\mathcal N$ and a set of perturbable variables $\mathcal X$, we construct a new BN $\overline{\mathcal N}$ such that for every $v\in {\sf Var}(f)$, if $v\in {\sf Var}(f)\setminus \mathcal X$, then the variable $v\in {\sf Var}(\overline{\mathcal N})$ and, $$\overline{f_{v}} = f_{v}$$ if $v \in \mathcal{X}$, then three variables $v, v^k, v^o \in \text{Var}(\overline{\mathcal{N}})$ and $$\overline{f_{v}} = \neg v^{k} \wedge (v^{o} \vee f_{v}), \overline{f_{v^{k}}} = v^{k}, \overline{f_{v^{o}}} = v^{o} \wedge \neg v^{k}.$$ # Counting over Perturbations (3/3) ### Definition (New BN) Given a BN $\mathcal N$ and a set of perturbable variables $\mathcal X$, we construct a new BN $\overline{\mathcal N}$ such that for every $v\in {\sf Var}(f)$, if $v\in {\sf Var}(f)\setminus \mathcal X$, then the variable $v\in {\sf Var}(\overline{\mathcal N})$ and, $$\overline{f_{V}} = f_{V}$$ if $v \in \mathcal{X}$, then three variables $v, v^k, v^o \in \mathsf{Var}(\overline{\mathcal{N}})$ and $$\begin{split} \overline{f_{v}} &= \neg v^{k} \wedge (v^{o} \vee f_{v}), \\ \overline{f_{v^{k}}} &= v^{k}, \\ \overline{f_{v^{o}}} &= v^{o} \wedge \neg v^{k}. \end{split}$$ | v^k | v° | f_{V} | Interpretation | |-------|----|-----------|---| | 1 | 0 | 0 | knockout perturbation | | 0 | 1 | 1 | over-expression perturbation | | 0 | 0 | f_{ν} | v is unperturbed | | 1 | 1 | - | infeasible due to $\overline{f_{v^o}} = v^o \wedge eg v^k$ | # Counting Formulation of 3rd Problems $$\begin{split} \mathcal{P} &= \mathsf{PhenToASP}(\beta) \wedge \begin{cases} \mathsf{fASP}(\overline{\mathcal{N}}) & \mathsf{for C-FIX-3} \\ \mathsf{tsconj}(\overline{\mathcal{N}}) & \mathsf{for C-MTS-3} \end{cases}, \qquad \overline{\mathcal{N}} \; \mathsf{is the new BN} \\ \Delta &= \bigcup_{v \in \mathcal{X}} \{ v^k, v^o \} \end{split}$$ ### Experimental Evaluation #### Benchmark Total 645 Boolean Networks from BN literature [TBP+2024,TBS2023]: - 245 real-world - ▶ 400 randomly generated with up to 5,000 variables. #### Phenotype and Perturbables Variables Selection - pseudo-randomly fixed three variables to represent the target phenotype - pseudo-randomly selected up to 50 perturbable variables #### Baseline | ASP | BDD | ADF | SAT ¹ | |---------------------|------|--------|-------------------| | Clingo
ApproxASP | AEON | k++ADF | GANAK
ApproxMC | Experimental Settings: 8 GB memory limit and 5000 seconds timeout ¹#SAT-based techniques can only be used for fixed points counting. # Results of Counting FIXs | | AEON | ADF | clingo | GANAK | ApproxMC | ApproxASP | |---------|------|-----|--------|-------|----------|-----------| | C-FIX-1 | 247 | 217 | 227 | 317 | 420 | 413 | | C-FIX-2 | 252 | - | 236 | 333 | 438 | 429 | | C-FIX-3 | 248 | - | 99 | 286 | 600 | 645 | # Results of Counting MTSs | | AEON | ADF | clingo | ApproxASP | |---------|------|-----|--------|-----------| | C-MTS-1 | 179 | 200 | 211 | 364 | | C-MTS-2 | 231 | - | 308 | 464 | | C-MTS-3 | 148 | - | 84 | 644 | ## A Case Study of Interferon 1 model - Interferon 1: Biochemical species closely tied to immune response present in T-cells. - ▶ The BN model has 121 variables and 55 inputs not regulated by others. - ▶ The model defines three phenotype variables, - ► ISG (expression antiviral response phenotype) - ► PCK (Proinflammatory cytokine expression inflammation) - ► IFN (Type 1 IFN response) - We selected 20 variables of the model as potential perturbation targets, which results in 3²⁰ admissible perturbations in our BN. - ▶ \nearrow Key idea: robustness $\propto \#AS(P)_{\downarrow \mathcal{X}}$ ## A Case Study of Interferon 1 model - Interferon 1: Biochemical species closely tied to immune response present in T-cells. - ▶ The BN model has 121 variables and 55 inputs not regulated by others. - The model defines three phenotype variables, - ► ISG (expression antiviral response phenotype) - ► PCK (Proinflammatory cytokine expression inflammation) - ► IFN (Type 1 IFN response) - We selected 20 variables of the model as potential perturbation targets, which results in 3²⁰ admissible perturbations in our BN. - ▶ P Key idea: robustness $\propto \#AS(P)_{\downarrow \mathcal{X}}$ | ISG | PCK | IFN | C-MTS-3 | Robustness (r) | Robustness | |-----|-----|-----|------------|------------------|------------| | 1 | - | - | 3486784401 | 1.000 | ^ | | - | 1 | - | 2114072298 | 0.606 | • | | | - | 1 | 2313362673 | 0.663 | | | 0 | 0 | 0 | 478296900 | 0.137 | 4 | | 0 | 1 | 0 | 478296900 | 0.137 | • | | 1 | 0 | 1 | 1096362783 | 0.314 | | | 1 | 1 | 1 | 1409735826 | 0.404 | ^ | #### Conclusion - We address the problem of counting minimal trap spaces and fixed points in BNs. - We propose novel methods for determining trap space and fixed point counts using approximate model counting, thus entirely avoiding costly enumeration. - ▶ We address three biologically motivated problems: - general counting - counting occurrences of a known phenotype - counting of perturbations that ensure the emergence of a known phenotype - ▶ Approximate counting substantially improves the feasibility of counting in BNs. #### Conclusion - We address the problem of counting minimal trap spaces and fixed points in BNs. - We propose novel methods for determining trap space and fixed point counts using approximate model counting, thus entirely avoiding costly enumeration. - ▶ We address three biologically motivated problems: - general counting - counting occurrences of a known phenotype - counting of perturbations that ensure the emergence of a known phenotype - ▶ Approximate counting substantially improves the feasibility of counting in BNs. https://github.com/meelgroup/bn-counting